8
Braz Dent Sci 2023 Jan/Mar;26 (1): e3485
Silva JMF et al.
Stress distribution in lower second molar mesialization using mini-implants: a pilot study using 3D finite element analysis
Silva JMF et al.
Stress distribution in lower second molar mesialization using
mini-implants: a pilot study using 3D finite element analysis
- The mini-implants tested showed similar
results and achieved the expected
performance;
- The load tested was effective to induce the
distribution of stress in the bone tissue, which
shows a tendency of dental displacement
occurring in the mesial direction;
- The stress distribution around the mini-
implants shows that the device characteristics
used in this study are in agreement in order
to promote an effective anchorage for the
studied movement;
- The design used demonstrated that a
clockwise movement is expected during
movement;
- The movement created theoretically allows
the second molar to take the location of the
rst molar.
Author’s Contributions
JMFS, RMA, FRV: Conceptualization. JCL,
RMA, CAAL, RSC, FRV: Methodology. JCL,
CAAL, RSC: Data Curation. JMFS, JCL, FZP,
FRV: Writing - Review & Editing. JMFS, FRV:
Supervision.
Conict of Interest
No conicts of interest declared concerning
the publication of this article.
Funding
The authors declare that no nancial support
was received.
Regulatory Statement
Not applicable.
REFERENCES
1. Normando D, Cavacami C. The influence of bilateral lower first
permanent molar loss on dentofacial morfology: a cephalometric
study. Dental Press J Orthod. 2010;15:100-6. http://dx.doi.
org/10.1590/S2176-94512010000600013.
2. Sousa ASD, Araújo FRL, Villela GSC, Normando D. Impact of early
loss of lower first permanent molars on third molar development
and position. Pesqui Bras Odontopediatria Clin Integr.
2021;21:e0072. http://dx.doi.org/10.1590/pboci.2021.050.
3. Pedroso JF, Lima DR, Lima FR, Pazinatto R. Multidisciplinary
treatment: association among orthodontics, implantodontia
and prosthetics. Case report. Braz Dent Sci. 2018;21(3):357-64.
http://dx.doi.org/10.14295/bds.2018.v21i3.1552.
4. Pithon M. Severe hemorrhage in a patient with dengue
hemorrhagic fever after insertion of orthodontic mini-implants.
A case report. Braz Dent Sci. 2020;23(4):1-7. http://dx.doi.
org/10.14295/bds.2020.v23i4.1952.
5. Felicita AS, Ravi S. Distalization of the entire maxillary arch with
mini-implants in the posterior palatal alveolus-a case report. Braz
Dent Sci. 2020;23(3):1-9. http://dx.doi.org/10.14295/bds.2020.
v23i3.1946.
6. Janson M, Silva DAF. Mesial movement of molars with
mini-implants anchorage. Dental Press Ortodon Ortop
Facial. 2008;13:88-94. http://dx.doi.org/10.1590/S1415-
54192008000500009.
7. Lima LAC, Lima C, Lima V, Lima V. Absolute anchorage with mini-
implants: improving the concepts of the orthodontic mechanics.
Innov Implant J Biomater Esthet. 2010;5:85-91.
8. Drago CJ. Use of osseointegrated implants in adult orthodontic
treatment: a clinical report. J Prosthet Dent. 1999;82(5):504-
9. http://dx.doi.org/10.1016/S0022-3913(99)70045-4.
PMid:10559718.
9. Marassi C, Marassi C. Mini-implantes ortodônticos como
auxiliares da fase de retração anterior. Dental Press Ortodon
Ortop Facial. 2008;13(5):57-75. http://dx.doi.org/10.1590/
S1415-54192008000500007.
10. Crismani AG, Bertl MH, Čelar AG, Bantleon HP, Burstone
CJ. Miniscrews in orthodontic treatment: review and
analysis of published clinical trials. Am J Orthod Dentofacial
Orthop. 2010;137(1):108-13. http://dx.doi.org/10.1016/j.
ajodo.2008.01.027. PMid:20122438.
11. Liu TC, Chang CH, Wong TY, Liu JK. Finite element analysis
of miniscrew implants used for orthodontic anchorage. Am J
Orthod Dentofacial Orthop. 2012;141(4):468-76. http://dx.doi.
org/10.1016/j.ajodo.2011.11.012. PMid:22464529.
12. Elias CN, Ruellas ACO, Fernandes DJ. Orthodontic implants:
concepts for the orthodontic practitioner. Int J Dent.
2012;2012:549761. http://dx.doi.org/10.1155/2012/549761.
PMid:23209470.
13. Liu Z, Sun T, Fan Y. Biomechanical influence of anchorages on
orthodontic space closing mechanics by sliding method. Med
Biol Eng Comput. 2020;58(5):1091-7. http://dx.doi.org/10.1007/
s11517-020-02149-1. PMid:32162244.
14. Chatzigianni A, Keilig L, Duschner H, Götz H, Eliades T, Bourauel
C. Comparative analysis of numerical and experimental data
of orthodontic mini-implants. Eur J Orthod. 2011;33(5):468-75.
http://dx.doi.org/10.1093/ejo/cjr097. PMid:21852288.
15. Knox J, Jones ML, Hubsch P, Middleton J, Kralj B. An evaluation
of the stresses generated in a bonded orthodontic attachment
by three different load cases using the finite element method
of stress analysis. J Orthod. 2000;27(1):39-46. http://dx.doi.
org/10.1093/ortho/27.1.39. PMid:10790443.
16. Verri FR, Okumura M, Lemos C, Almeida D, Batista VES, Cruz
RS,etal. Three-dimensional finite element analysis of glass fiber
and cast metal posts with different alloys for reconstruction
of teeth without ferrule. J Med Eng Technol. 2017;41(8):644-
51. http://dx.doi.org/10.1080/03091902.2017.1385655.
PMid:29043866.
17. Verri FR, Cruz RS, Batista VES, Almeida DA, Verri AC, Lemos
CA,etal. Can the modeling for simplification of a dental implant
surface affect the accuracy of 3D finite element analysis?
Comput Methods Biomech Biomed Engin. 2016;19(15):1665-
72. http://dx.doi.org/10.1080/10255842.2016.1176156.
PMid:27082041.
18. Ludwig B, Baumgaertel S, Zorkun B, Bonitz L, Glasl B, Wilmes
B,etal. Application of a new viscoelastic finite element method