8
Braz Dent Sci 2023 July/Sept 26 (3): e3775
El Hussieny Fayad NM et al.
The effect of different framework’s material on strain induced in distal abutment in mandibular Kennedy’s class II: an in-vitro study
El Hussieny Fayad NM et al. The effect of different framework’s material on strain
induced in distal abutment in mandibular Kennedy’s class II:
an in-vitro study
denture clasps: an In-vitro Study. Braz Dent Sci. 2020;23(3):6-10.
http://dx.doi.org/10.14295/bds.2020.v23i3.1935.
12. Makkar S, Chhabra A, Khare A. Attachment retained removable
partial denture: a clinical report. Inter J of Clin Dent Sci.
2011;2(2):13-9.
13. Sadek SA. Comparative study clarifying the usage of PEEK as
suitable material to be used as partial denture attachment and
framework. Open Access Maced J Med Sci. 2019;7(7):1193-7.
http://dx.doi.org/10.3889/oamjms.2019.287 PMid:31049106.
14. Alkhodary MA, Class II. Kenn edy implant assisted mandibular
removable partial dentures with and without cross arch stabilization:
a strain gauge in vitro study. Egypt Dent J. 2020;66(2):1173-82.
http://dx.doi.org/10.21608/edj.2020.23987.1010.
15. Chen X, Mao B, Zhu Z, Yu J, Lu Y, Zhang Q, et al. A
three-dimensional finite element analysis of mechanical function
for 4 removable partial denture designs with 3 framework
materials: CoCr, Ti-6Al-4V alloy and PEEK. Sci Rep. 2019;9(1):13975.
http://dx.doi.org/10.1038/s41598-019-50363-1 PMid:31562391.
16. Chen J, Cai H, Suo L, Xue Y, Wang J, Wan Q. A systematic
review of the survival and complication rates of inlay-retained
fixed dental prostheses. J Dent. 2017;59:2-10. http://dx.doi.
org/10.1016/j.jdent.2017.02.006. PMid:28212978.
17. Alqurashi H, Khurshid Z, Syed AU, Habib SR, Rokaya D, Zafar
MS. Polyetherketoneketone (PEKK): an emerging biomaterial for
oral implants and dental prostheses. J Adv Res. 2020;28:87-95.
http://dx.doi.org/10.1016/j.jare.2020.09.004 PMid:33384878.
18. Villefort RF, Diamantino PJ, Von Zeidler SL, Borges AL,
Saavedra GD, Tribst JP. Mechanical response of PEKK and
PEEK as frameworks for implant-supported full-arch fixed
dental prosthesis: 3D finite element analysis. Eur J Dent.
2022;16(1):115-21. http://dx.doi.org/10.1055/s-0041-1731833.
PMid:34560810.
19. Maharana T, Sutar AK, Routaray A, Nath N, Negi YS.
Polyetheretherketone (PEEK): applications as a biomaterial.
encyclopedia of biomedical polymers and polymeric biomaterials.
2014;35(1):1701-8
20. Sanath S, Kamalakanth K, Rajesh S, Vidya B, Mallikarjuna R,
Abhishek CK. Pekk (Polyetherketoneketone) as a prosthetic
material- a review. Int J Recent Sci Res. 2018;9(4):25724-6.
21. Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials
and CAD/CAM technology: state of the art. J Prosthodont Res.
2014;58(4):208-16. http://dx.doi.org/10.1016/j.jpor.2014.07.003
PMid:25172234.
22. Whitty T. PEEK: a new material for CAD/CAM dentistry. Juvora
Dental Innovations. 2014;7(2):123-40.
23. Ahmed MA, Hamdy AM, Fattah GA, Effadl AK. Prosthetic
design and restorative material effect on the biomechanical
behavior of dental implants: strain gauge analysis. Braz Dent Sci.
2022;25(3):e3380. http://dx.doi.org/10.4322/bds.2022.e3380.
24. Ramadan RE, Mohamed FS, Gepreel MA. Evaluation of implant-
assisted mandibular overdenture with new metal to metal interface
attachment system (in vitro study). Alex Dent J. 2020;45(1):106-11.
http://dx.doi.org/10.21608/adjalexu.2020.79970.
25. Saleh MM, Aldori D. Effects of new modification in the design
of the attachments retaining distal extension partial denture
on stress distribution around the abutments and residual
ridges: an in vitro study. Dent Hypotheses. 2020;11(4):112-29.
http://dx.doi.org/10.4103/denthyp.denthyp_38_20.
26. Rady AA, Abdel Nabi N. Stress analysis of two different
attachments for a two implant retained mandibular overdenture.
Egypt Dent J. 2017;63(4):3447-57. http://dx.doi.org/10.21608/
edj.2017.76263.
27. El-Baz R, Fayad M, Abas M, Shoieb A, Gad M, Helal MA.
Comparative study of some mechanical properties of cobalt
chromium and polyether ether ketone thermoplastic removable
partial denture clasps: an In-vitro Study. Braz Dent Sci.
2020;23(3):6. http://dx.doi.org/10.14295/bds.2020.v23i3.1935.
28. Mutto JC, Sato TP, da Silva JM, Borges AL, Uemura ES.
Retentiveness comparison of individual clasps made from
polyamide, acetate resin and cobalt-chrome for removable
partial dentures. Braz Dent Sci. 2019;22(4):483-7. http://dx.doi.
org/10.14295/bds.2019.v22i4.1802.
29. Mamdouh RI, El-Sherbini NN, Mady YO. Treatment outcomes
based on patient’s oral health related quality of life (OHRQoL)
after receiving conventional clasp or precision attachment
removable partial dentures in distal extension cases: a randomized
controlled clinical trial. Braz Dent Sci. 2019;22(4):528-37.
http://dx.doi.org/10.14295/bds.2019.v22i4.1819.
30. Sabri LA, Abdulkareem JF, Salloomi KN, Faraj SA, Al-Zahawi
AR, Abdullah OI, et al. Finite element analysis of class II
mandibular unilateral distal extension partial dentures.
J Mech Eng Sci. 2022;236(17):9407-18. http://dx.doi.
org/10.1177/09544062221096634.
31.
Al-Okl A, Al Samahy M, Amin H, Khashaba U. Stresses induced
by integrated and’nonintegrated extracoronal semi-precision
attachments for maxillary distal extension bases. Al-Azhar Dent J for
Girls. 2018;5(3):297-304. http://dx.doi.org/10.21608/adjg.2018.17195.
32. Ragghianti MS, Greghi SL, Lauris JR, Sant’Ana AC, Passanezi
E. Influence of age, sex, plaque and smoking on periodontal
conditions in a population from Bauru, Brazil. J Appl Oral
Sci. 2004;12(4):273-9. http://dx.doi.org/10.1590/S1678-
77572004000400004. PMid:20976396.
33. Fayyad A. Comparison between two different unilateral
mandibular partial denture designs retained by extra-coronal
attachment: an in-vitro study. Egypt Dent J. 2022;68(3):2479-85.
http://dx.doi.org/10.21608/edj.2022.127727.2024.
34.
Elgamal M. PEEK versus Metallic Framework for extracoronal
attachment mandibular bilateral distally extended Removable Dental
Prosthesis (RDP) evaluation of abutments bone height changes
and patient satisfaction. A Randomized Clinical Trial. Egypt Dent J.
2022;68(1):631-45. http://dx.doi.org/10.21608/edj.2021.93903.1778.
35.
Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M,etal.
Polyetheretherketone a suitable material for fixed dental prostheses?
J Biomed Mater Res B Appl Biomater. 2013;101(7):1209-16.
http://dx.doi.org/10.1002/jbm.b.32932 PMid:23564476.
36. Schwitalla AD, Spintig T, Kallage I, Müller WD. Flexural
behavior of PEEK materials for dental application. Dent
Mater. 2015;31(11):1377-84. http://dx.doi.org/10.1016/j.
dental.2015.08.151 PMid:26361808.
37. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK
material in dentistry. J. Int. Dent. 2018;8(2):84-92. http://dx.doi.
org/10.5577/intdentres.2018.vol8.no2.6.
38. Skirbutis G, Dzingutė A, Masiliūnaitė V, Šulcaitė G, Žilinskas J.
PEEK polymer’s properties and its use in prosthodontics: a review.
Stomatologija. 2018;20(2):54-8. PMid:30531169.
39. Bagley D, Bell M. Method for producing sealing and anti-extrusion
components for use in downhole tools and components
produced thereby. United States Patent Application US
10/112,172. 2002 Dec 26.
40. Alsadon O, Wood D, Patrick D, Pollington S. Fatigue
behavior and damage modes of high-performance
poly-ether-ketone-ketone PEKK bilayered crowns. J Mech Behav
Biomed Mater. 2020;110:103957. http://dx.doi.org/10.1016/j.
jmbbm.2020.103957. PMid:32957248.
41. Lee KS, Shin SW, Lee SP, Kim JE, Kim JH, Lee JY. Comparative
evaluation of a four implant–supported poly ether ketone
ketone framework prosthesis: a three-dimensional finite element
analysis based on cone beam computed tomography and
computer aided design. Int J Prosthodont. 2017;30(6):581-5.
http://dx.doi.org/10.11607/ijp.5369. PMid:29095963.
42. Sirandoni D, Leal E, Weber B, Noritomi P, Fuentes R, Borie E.
Effect of different framework materials in implant-supported
fixed mandibular prostheses: a finite element analysis. Int J
Oral Maxillofac Implants. 2019;34(6):e107-14. http://dx.doi.
org/10.11607/jomi.7255. PMid:31711084.