8
Braz Dent Sci 2023 July/Sept;26 (3): e3791
Djamaluddin et al.
Suckermouth catfish bone extract as bone graft raw material for bone-healing promotes bone growth in bone loss
Djamaluddin et al. Suckermouth catfish bone extract as bone graft raw material
for bone-healing promotes bone growth in bone loss
20. Varghese J, Rajagopal A, Shanmugasundaram S. Role of
Biomaterials Used for Periodontal Tissue Regeneration e
mdash. A Concise Evidence-Based Review. Polymers (Basel).
2022;14(15):3038. http://dx.doi.org/10.3390/polym14153038.
PMid:35956553.
21. Touwe S. Local Wisdom values of maritime community
in preserving marine resources in Indonesia. J Maritime
Stud National Integration. 2020;4(2):84-94. http://dx.doi.
org/10.14710/jmsni.v4i2.4812.
22. Mohd Pu’ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC.
Syntheses of hydroxyapatite from natural sources. Heliyon.
2019;5(5):e01588. http://dx.doi.org/10.1016/j.heliyon.2019.
e01588. PMid:31080905.
23. Amir N, Syahrul S, Djamaluddin N. Suckermouth Catfish
(Pterygoplichthys pardalis) In Wajo Regency, South
Sulawesi Province: The Heavy Metal Content of Lead (Pb),
Mercury (Hg) and Arsenic (As). Agrikan. Jurnal Agribisnis
Perikanan. 2020;13(2):168-74. http://dx.doi.org/10.29239/j.
agrikan.13.2.168-174.
24. Alqap ASF, Sopyan I. Low temperature hydrothermal synthesis
of calcium phosphate ceramic: effect of excess Ca precursor on
phase behaviour. Indian J Chem. 2009;48A:1492-500.
25. Chadijah S, Hardiyanti H, Sappewali S. Sintesis dan Karakterisasi
Hidroksiapatit dari Tulang Ikan Tuna (
Thunnus Albacores
) dengan
XRF, FTIR, dan XRD. Al-Kimia. 2018;6(2):184-90. http://dx.doi.
org/10.24252/al-kimia.v6i2.5067.
26. Vieira E, Silva M, Maia-Filho A, Ferreira D, Figuerêdo-Silva J,
Rovaris K,etal. Effect of Cerium-containing hydroxyapatite
in bone repair in female rats with osteoporosis induced by
ovariectomy. Minerals (Basel). 2021;11(4):377. http://dx.doi.
org/10.3390/min11040377.
27. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-past,
present, and future in bone regeneration. Bone Tissue Regen
Insights. 2016;7:BTRI.S36138. http://dx.doi.org/10.4137/BTRI.
S36138.
28. Noor Z. Nanohydroxyapatite application to osteoporosis
management. J Osteoporos. 2013;2013:679025. http://dx.doi.
org/10.1155/2013/679025. PMid:24288653.
29. Suresh Kumar C, Dhanaraj K, Vimalathithan RM, Ilaiyaraja P,
Suresh G. Hydroxyapatite for bone related applications derived
from sea shell waste by simpleprecipitation method. J Asian
Ceram Soc. 2020;8(2):416-29. http://dx.doi.org/10.1080/2187
0764.2020.1749373.
30. Amenta E, King HE, Petermann H, Uskoković V, Tommasini SM,
Macica CM. Vibrational spectroscopic analysis of hydroxyapatite
in HYP mice and individuals with X-linked hypophosphatemia.
Ther Adv Chronic Dis. 2018;9(12):268-81. http://dx.doi.
org/10.1177/2040622318804753. PMid:30719271.
31. Venkatesan J, Lowe B, Manivasagan P, Kang KH, Chalisserry EP, Anil
S,etal. Isolation and Characterization of nano-hydroxyapatite
from salmon fish bone. Materials (Basel). 2015;8(8):5426-39.
http://dx.doi.org/10.3390/ma8085253. PMid:28793514.
32. Barinov SM, Rau JV, Cesaro SN, Durisin J, Fadeeva IV, Ferro D,etal.
Carbonate release from carbonated hydroxyapatite in the wide
temperature rage. J Mater Sci Mater Med. 2006;17(7):597-604.
http://dx.doi.org/10.1007/s10856-006-9221-y. PMid:16770543.
33. Gan YX, Jayatissa AH, Yu Z, Chen X, Li M. Hydrothermal
synthesis of nanomaterials. J Nanomater. 2020;2020:8917013.
http://dx.doi.org/10.1155/2020/8917013.
34. He Y, Zhao Y, Fan L, Wang X, Duan M, Wang H,etal. Injectable
affinity and remote magnetothermal effects of Bi-based
alloy for long-term bone defect repair and analgesia. Adv Sci
(Weinh). 2021;8(14):e2100719. http://dx.doi.org/10.1002/
advs.202100719. PMid:34014040.
35. Ganguly P, Breen A, Pillai SC. Toxicity of nanomaterials:
exposure, pathways, assessment, and recent advances. ACS
Biomater Sci Eng. 2018;4(7):2237-75. http://dx.doi.org/10.1021/
acsbiomaterials.8b00068. PMid:33435097.
36. Herranz-Diez C, Crawford A, Goodchild RL, Hatton PV, Miller
CA. Stimulation of metabolic activity and cell differentiation
in osteoblastic and human mesenchymal stem cells by a
nanohydroxyapatite paste bone graft substitute. Materials
(Basel). 2022;15(4):1570. http://dx.doi.org/10.3390/
ma15041570. PMid:35208112.
37. Rajula MPB, Narayanan V, Venkatasubbu GD, Mani RC, Sujana A.
Nano-hydroxyapatite: a driving force for bone tissue engineering.
J Pharm Bioallied Sci. 2021;13(Suppl 1):S11-4. http://dx.doi.
org/10.4103/jpbs.JPBS_683_20. PMid:34447034.
38.
Lowe B, Hardy JG, Walsh LJ. Optimizing nanohydroxyapatite
nanocomposites for bone tissue engineering. ACS Omega. 2020;5(1):1-9.
http://dx.doi.org/10.1021/acsomega.9b02917. PMid:31956745.
39. Dai C, Wang Q, Patias G, Shegiwal A, Zhu L, Jiu M. Defect-
related luminescent microstructured hydroxyapatite promote
bone regeneration through nucleating effect. Mater Express.
2020;10(7):1102-8. http://dx.doi.org/10.1166/mex.2020.1720.
40. Ansari M. Bone tissue regeneration: biology, strategies and
interface studies. Prog Biomater. 2019;8(4):223-37. http://dx.doi.
org/10.1007/s40204-019-00125-z. PMid:31768895.
41. Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao
Z, et al. Modulation of the inflammatory response and bone
healing. Front Endocrinol (Lausanne). 2020;11:386. http://dx.doi.
org/10.3389/fendo.2020.00386. PMid:32655495.
42. Syam S, Chang C-W, Lan W-C, Ou K-L, Huang B-H, Lin Y-Y,etal.
An innovative bioceramic bone graft with platelet-rich plasma for
rapid bone healing and regeneration in a rabbit model. Appl Sci
(Basel). 2021;11(11):5271. http://dx.doi.org/10.3390/app11115271.
Nurlindah Hamrun
(Corresponding address)
Hasanuddin University, Department of Oral Biology, Faculty of Dentistry,
Makassar, Indonesia.
Email: lindahamrun@unhas.ac.id
Date submitted: 2023 Jan 26
Accepted submission: 2023 Jun 22