9
Braz Dent Sci 2024 Jan/Mar;27 (1): e4172
Adtani PN et al.
Therapeutic potential of Sulforaphane: modulation of NRF2-mediated PI3/AKT/mTOR pathway in oral fibrosis
Adtani PN et al. Therapeutic potential of Sulforaphane: modulation of
NRF2-mediated PI3/AKT/mTOR pathway in oral fibrosis
to develop mechanism based preventive and
therapeutic strategies for OSF. Overall, based
on the observed results, the authors conrm the
research hypothesis.
ABBREVIATIONS
TGFβ1 – Transforming Growth Factor Beta 1
COL1A2 – Collagen Type 1 Alpha 2
PI3K – Phosphatidylinositol 3 kinase
AKT1 – Serine/Threonine Kinase 1
mTOR – Mammalian Target of Rapamycin
NRF2 – Nuclear Factor Erythroid 2–Related
Factor 2
TBP – Tata Box Binding Protein
Author’s Contributions
PNA: Conceptualization, Investigation, Data
Curation, Writing – Original Draft Preparation,
Writing – Review & Editing. RS: Methodology,
Investigation, Data Curation, Writing – Original
Draft Preparation, Writing – Review & Editing.
RS: Formal Analysis, Writing – Review & Editing.
WE: Formal Analysis, Writing – Review & Editing.
Conict of Interest
The authors have no conicts of interest to
declare.
Funding
This research did not receive any specic
grant from funding agencies in the public,
commercial, or not-for-prot sectors.
Regulatory Statement
Not-Applicable for this study.
REFERENCES
1. Rajalalitha P, Vali S. Molecular pathogenesis of oral
submucous fibrosis: a collagen metabolic disorder. J Oral
Pathol Med. 2005;34(6):321-8. http://doi.org/10.1111/j.1600-
0714.2005.00325.x. PMid:15946178.
2. Muller S, Tilakaratne WM. Update from the 5th edition of the
World Health Organization Classification of Head and Neck
Tumors: tumours of the oral cavity and mobile tongue. Head
Neck Pathol. 2022;16(1):54-62. http://doi.org/10.1007/s12105-
021-01402-9. PMid:35312982.
3. Tilakaratne WM, Ekanayaka RP, Warnakulasuriya S. Oral
submucous fibrosis: a historical perspective and a review on
etiology and pathogenesis. Oral Surg Oral Med Oral Pathol
Oral Radiol. 2016;122(2):178-91. http://doi.org/10.1016/j.
oooo.2016.04.003. PMid:27422417.
4. Gayathri K, Malathi N, Gayathri V, Adtani PN, Ranganathan K.
Molecular pathways of oral submucous fibrosis and its progression
to malignancy. Arch Oral Biol. 2023;148:105644. http://doi.
org/10.1016/j.archoralbio.2023.105644. PMid:36804642.
5. Jian X, Jian Y, Wu X, Guo F, Hu Y, Gao X,etal. Oral submucous
fibrosis transforming into squamous cell carcinoma: a prospective
study over 31 years in mainland China. Clin Oral Investig.
2021;25(4):2249-56. http://doi.org/10.1007/s00784-020-
03541-9. PMid:32844258.
6. Shen YW, Shih YH, Fuh LJ, Shieh TM. Oral submucous fibrosis: a
review on biomarkers, pathogenic mechanisms, and treatments.
Int J Mol Sci. 2020;21(19):7231. http://doi.org/10.3390/
ijms21197231. PMid:33008091.
7. Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, Bagan JV,
Gonzalez-Moles MA, Kerr AR,etal. Oral potentially malignant
disorders: a consensus report from an international seminar
on nomenclature and classification, convened by the WHO
Collaborating Centre for Oral Cancer. Oral Dis. 2021;27(8):1862-
80. http://doi.org/10.1111/odi.13704. PMid:33128420.
8. Adtani PN, Narasimhan M, Punnoose AM, Kambalachenu HR.
Antifibrotic effect of
Centella
asiatica
Linn and asiatic acid on
arecoline-induced fibrosis in human buccal fibroblasts. J Investig
Clin Dent. 2017;8(2):e12208. http://doi.org/10.1111/jicd.12208.
PMid:26840561.
9. Adtani P, Malathi N, Ranganathan K, Lokeswari S, Punnoose AM.
Antifibrotic effect of
Ocimum
basilicum
L. and linalool on arecoline-
induced fibrosis in human buccal fibroblasts. Trans Res Oral
Oncol. 2018;3:1-9. http://doi.org/10.1177/2057178X18764471.
10. Lee PH, Chu PM, Hsieh PL, Yang HW, Chueh PJ, Huang YF,etal.
Glabridin inhibits the activation of myofibroblasts in human
fibrotic buccal mucosal fibroblasts through TGF-beta/smad
signaling. Environ Toxicol. 2018;33(2):248-55. http://doi.
org/10.1002/tox.22512. PMid:29119715.
11. Xie H, Jing R, Liao X, Chen H, Xie X, Dai H, et al. Arecoline
promotes proliferation and migration of human HepG2 cells
through activation of the PI3K/AKT/mTOR pathway. Hereditas.
2022;159(1):29. http://doi.org/10.1186/s41065-022-00241-0.
PMid:35836300.
12. Wang J, Hu K, Cai X, Yang B, He Q, Wang J,etal. Targeting PI3K/
AKT signaling for treatment of idiopathic pulmonary fibrosis.
Acta Pharm Sin B. 2022;12(1):18-32. http://doi.org/10.1016/j.
apsb.2021.07.023. PMid:35127370.
13. Wang R, Song F, Li S, Wu B, Gu Y, Yuan Y. Salvianolic acid A
attenuates CCl(4)-induced liver fibrosis by regulating the
PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3
signaling pathways. Drug Des Devel Ther. 2019;13:1889-900.
http://doi.org/10.2147/DDDT.S194787. PMid:31213776.
14. He J, Peng H, Wang M, Liu Y, Guo X, Wang B,etal. Isoliquiritigenin
inhibits TGF-beta1-induced fibrogenesis through activating
autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta
Biochim Biophys Sin. 2020;52(8):810-20. http://doi.org/10.1093/
abbs/gmaa067. PMid:32638014.
15. Bendavit G, Aboulkassim T, Hilmi K, Shah S, Batist G. Nrf2
transcription factor can directly regulate mTOR: linking
cytoprotective gene expression to a major metabolic regulator
that generates redox activity. J Biol Chem. 2016;291(49):25476-
88. http://doi.org/10.1074/jbc.M116.760249. PMid:27784786.
16. Ramalingam S, Shantha S, Muralitharan S, Sudhakar U,
Thamizhchelvan H, Parvathi VD. Role of tissue markers
associated with tumor microenvironment in the progression
and immune suppression of oral squamous cell carcinoma. Med
Oncol. 2023;40(10):303. http://doi.org/10.1007/s12032-023-
02169-5. PMid:37731058.