8
Braz Dent Sci 2024 July/Sept;27 (3): e4233
Bessa ERL et al.
Antifungal effect of Quillaja saponaria plant extract on biofilms of five Candida species of dental interest
Bessa ERL et al. Antifungal effect of Quillaja saponaria plant extract on
biofilms of five Candida species of dental interest
(Basel). 2021;7(7):555. http://doi.org/10.3390/jof7070555.
PMid:34356934.
2. Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida
albicans. Virulence. 2022;13(1):89-121. http://doi.org/10.1080/
21505594.2021.2019950. PMid:34964702.
3. Czechowicz P, Nowicka J, Gościniak G. Virulence factors
of Candida spp. and host immune response important in
the pathogenesis of vulvovaginal candidiasis. Int J Mol Sci.
2022;23(11):5895. http://doi.org/10.3390/ijms23115895.
PMid:35682581.
4. Sadeghi G, Ebrahimi-Rad M, Mousavi SF, Shams-Ghahfarokhi
M, Razzaghi-Abyaneh M. Emergence of non-Candida albicans
species: epidemiology, phylogeny and fluconazole susceptibility
profile. J Mycol Med. 2018;28(1):51-8. http://doi.org/10.1016/j.
mycmed.2017.12.008. PMid:29366545.
5. Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM.
Non-albicans candida species: immune response, evasion
mechanisms, and new plant-derived alternative therapies. J
Fungi (Basel). 2022;9(1):11. http://doi.org/10.3390/jof9010011.
PMid:36675832.
6. Barantsevich N, Barantsevich E. Diagnosis and treatment of
invasive candidiasis. Antibiotics (Basel). 2022;11(6):718. http://
doi.org/10.3390/antibiotics11060718. PMid:35740125.
7. Polke M, Hube B, Jacobsen ID. Candida survival strategies.
Adv Appl Microbiol. 2015;91:139-235. http://doi.org/10.1016/
bs.aambs.2014.12.002. PMid:25911234.
8. Rai LS, Wijlick LV, Bougnoux ME, Bachellier-Bassi S, d’Enfert
C. Regulators of commensal and pathogenic lifestyles of an
opportunistic fungus-Candida albicans. Yeast. 2021;38(4):243-
50. http://doi.org/10.1002/yea.3550. PMid:33533498.
9. Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell
AP, Noble SM. Candida albicans morphogenesis programs
control the balance between gut commensalism and invasive
infection. Cell Host Microbe. 2019;25(3):432-443.e6. http://doi.
org/10.1016/j.chom.2019.02.008. PMid:30870623.
10. Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida
albicans. Virulence. 2022;13(1):89-121. http://doi.org/10.1080/
21505594.2021.2019950. PMid:34964702.
11. Pereira R, Santos Fontenelle RO, Brito EHS, Morais SM. Biofilm of
Candida albicans: formation, regulation and resistance. J Appl
Microbiol. 2021;131(1):11-22. http://doi.org/10.1111/jam.14949.
PMid:33249681.
12. Fyhrquist P, Virjamo V, Hiltunen E, Julkunen-Tiitto R.
Epidihydropinidine, the main piperidine alkaloid compound of
Norway spruce (Picea abies) shows promising antibacterial and
anti-Candida activity. Fitoterapia. 2017;117:138-46.http://doi.
org/10.1016/j.fitote.2017.01.011. PMid:28163074.
13. Alves PM, Queiroz LM, Pereira JV, Pereira Mdo S. Atividade
antimicrobiana, antiaderente e antifúngica in vitro de
plantas medicinais brasileiras sobre microrganismos do
biofilme dental e cepas do gênero Candida. Rev Soc Bras
Med Trop. 2009;42(2):222-4. http://doi.org/10.1590/S0037-
86822009000200028.
14. Garg S, Roy A. A current perspective of plants as an antibacterial
agent: a review. Curr Pharm Biotechnol. 2020;21(15):1588-
602. http://doi.org/10.2174/1389201021666200622121249.
PMid:32568018.
15. Mendoza-León JC, Fuertes Ruitón CM, Jahuira-Arias MH.
Preliminary phytochemical analysis and in vitro antifungal activity
of the ethanolic extract of the leaves of Solanum hispidum
pers. collected in the locality in Obraje Peru. Rev Peru Med
Exp Salud Publica. 2022;39(3):321-7. http://doi.org/10.17843/
rpmesp.2022.393.11381.
16. Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira
F, et al. Saponins from Quillaja saponaria and Quillaja
brasiliensis: particular chemical characteristics and biological
activities. Molecules. 2019;24(1):171. http://doi.org/10.3390/
molecules24010171. PMid:30621160.
17. Reichert CL, Salminen H, Weiss J. Quillaja saponin
characteristics and functional properties. Annu Rev Food Sci
Technol. 2019;10(1):43-73. http://doi.org/10.1146/annurev-
food-032818-122010. PMid:30664381.
18. Magedans YV, Yendo AC, Costa F, Gosmann G, Fett-Neto AG.
Foamy matters: an update on Quillaja saponins and their use
as immunoadjuvants. Future Med Chem. 2019;11(12):1485-99.
http://doi.org/10.4155/fmc-2018-0438. PMid:31304830.
19. Sewlikar S, D’Souza DH. Antimicrobial effects of Quillaja
saponaria extract against Escherichia coli O157:H7 and the
Emerging Non-O157 Shiga Toxin-Producing E. coli. J Food Sci.
2017;82(5):1171-7. http://doi.org/10.1111/1750-3841.13697.
PMid:28452110.
20. Clinical and Laboratory Standards Institute. CLSI document
M07-A9: Methods for dilution antimicrobial susceptibility tests
for bacteria that grow aerobically. Wayne: CLSI; 2012.
21. Gil J, Solis M, Higa A, Davis SC. Candida albicans Infections:
a novel porcine wound model to evaluate treatment efficacy.
BMC Microbiol. 2022;22(1):45. http://doi.org/10.1186/s12866-
022-02460-x. PMid:35120444.
22. Lee SM, Park JH, Suh SY, Lee SM, Byon I. Efficacy of
intravitreal povidone-iodine administration for the treatment
of Candida albicans endophthalmitis in rabbits. Exp Eye Res.
2021;212:108788. http://doi.org/10.1016/j.exer.2021.108788.
PMid:34637791.
23. Ribeiro FC, Rossoni RD, Barros PP, Santos JD, Fugisaki
LRO, Leão MPV, et al. Action mechanisms of probiotics on
Candida spp. and candidiasis prevention: an update. J Appl
Microbiol. 2020;129(2):175-85. http://doi.org/10.1111/jam.14511.
PMid:31705713.
24. Arendrup MC. Candida and candidaemia. Susceptibility and
epidemiology. Dan Med J. 2013;60(11):B4698. PMid:24192246.
25. Pristov KE, Ghannoum MA. Resistance of Candida to azoles and
echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792-
8. http://doi.org/10.1016/j.cmi.2019.03.028. PMid:30965100.
26. Fernandes L, Ribeiro R, Henriques M, Rodrigues ME. Candida
auris, a singular emergent pathogenic yeast: its resistance
and new therapeutic alternatives. Eur J Clin Microbiol Infect
Dis. 2022;41(12):1371-85. http://doi.org/10.1007/s10096-022-
04497-2. PMid:36198878.
27. Jafri H, Ahmad I. Thymus vulgaris essential oil and thymol
inhibit biofilms and interact synergistically with antifungal
drugs against drug resistant strains of Candida albicans and
Candida tropicalis. J Mycol Med. 2020;30(1):100911. http://doi.
org/10.1016/j.mycmed.2019.100911. PMid:32008964.
28. Meccatti VM, Santos LF, Carvalho LS, Souza CB, Carvalho CAT,
Marcucci MC,etal. Antifungal action of herbal plants’ glycolic
extracts against candida species. Molecules. 2023;28(6):2857.
http://doi.org/10.3390/molecules28062857. PMid:36985829.
29. Sewlikar S, D’Souza DH. Antimicrobial effects of quillaja
saponaria extract against Escherichia coli O157:H7 and the
Emerging Non-O157 shiga toxin-producing E. coli. J Food Sci.
2017;82(5):1171-7. http://doi.org/10.1111/1750-3841.13697.
PMid:28452110.
30. Abu-Rabia A. Urinary diseases and ethnobotany among pastoral
nomads in the Middle East. J Ethnobiol Ethnomed. 2005;1(1):4.
http://doi.org/10.1186/1746-4269-1-4. PMid:16270930.
31. Hassan SM, Byrd JA, Cartwright AL, Bailey CA. Hemolytic and
antimicrobial activities differ among saponin-rich extracts from
guar, quillaja, yucca, and soybean. Appl Biochem Biotechnol.
2010;162(4):1008-17. http://doi.org/10.1007/s12010-009-
8838-y. PMid:19915999.