11
Braz Dent Sci 2024 July/Sept;27 (3): e4267
El Shazli MM et al.
Effect of r epeated pressing on the fractur e resistance of heat-pres sed glass ceramic crowns
El Shazli MM et al. Effect of repeated pressing on the fracture resistance of
heat-pressed glass ceramic crowns
2. Hallmann L, Ulmer P, Gerngross M-D, Jetter J, Mintrone M,
Lehmann F,et al. Properties of hot-pressed lithium silicate
glass-ceramics. Dent Mater. 2019;35(5):713-29. http://doi.
org/10.1016/j.dental.2019.02.027. PMid:30853210.
3. El-Etreby A, Ghanem L. The effect of repeated heat-pressing on
the biaxial flexural strength and surface roughness of lithium
dislilicate glass-ceramics. Egypt Dent J. 2017;63(1):833-40.
http://doi.org/10.21608/edj.2017.75033.
4. De Morais D, Santos M, Campos T, Trichês E, Borges A. Study
of crystallization, microstructure and mechanical properties of
lithium disilicate glass-ceramics as a function of the sintering
temperature. Braz Dent Sci. 2021;24(2):1-9.
5. Ohashi K, Kameyama Y, Wada Y, Midono T, Miyake K, Kunzelmann
K, etal. Evaluation and comparison of the characteristics of
three pressable lithium disilicate glass ceramic materials. Int J
Dev Res. 2017;7:10731.
6. Tang X, Tang C, Su H, Luo H, Nakamura T, Yatani H. The effects
of repeated heat-pressing on the mechanical properties and
microstructure of IPS e.max press. J Mech Behav Biomed Mater.
2014;40:390-6. http://doi.org/10.1016/j.jmbbm.2014.09.016.
PMid:25300063.
7. Gorman C, Horgan K, Dollard R, Stanton K. Effects of repeated
processing on the strength and microstructure of a heat-pressed
dental ceramic. J Prosthet Dent. 2014;112(6):1370-6. http://doi.
org/10.1016/j.prosdent.2014.06.015. PMid:25258270.
8. Chung KH, Liao JH, Duh JG, Chan DC. CHAN DCN. The
effects of repeated heat‐pressing on properties of pressable
glass‐ceramics. J Oral Rehabil. 2009;36(2):132-41. http://doi.
org/10.1111/j.1365-2842.2008.01909.x. PMid:18681936.
9. Naji G, Omar R, Yahya R. An overview of the development and
strengthening of all-ceramic dental materials. Biomed Pharmacol
J. 2018;11(3):1553-63. http://doi.org/10.13005/bpj/1522.
10. Aurélio L, Dorneles L, May L. Extended glaze firing on ceramics
for hard machining: crack healing, residual stresses, optical and
microstructural aspects. Dent Mater. 2017;33(2):226-40. http://
doi.org/10.1016/j.dental.2016.12.002. PMid:28069245.
11. Yehia SA, Hammad IA, Azer AS. The Effects of Re-Pressing On
Biaxial Flexural Strength And Microstructure Of Celtra Press
(An Invitro Study). Alex Dent J. 2022;47(1):102-8. http://doi.
org/10.21608/adjalexu.2021.53782.1138.
12. Abo-Elezz A, Eletreby A, Mohamed F. Effect of heat tempering on
the biaxial flexural strength of four heat pressed glass ceramics
(an in vitro study). Egypt Dent J. 2023;69(2):1297-306. http://
doi.org/10.21608/edj.2023.184618.2394.
13. Yuan K, Wang F, Gao J, Sun X, Deng Z, Wang H,etal. Effect
of sintering time on the microstructure, flexural strength
and translucency of lithium disilicate glass-ceramics. J
Non-Cryst Solids. 2013;362:7-13. http://doi.org/10.1016/j.
jnoncrysol.2012.11.010.
14. Haag P, Ciber E, Dérand T. Firing temperature accuracy of four
dental furnaces. Swed Dent J. 2011;35(1):25-31. PMid:21591597.
15. Miranda JS, de Pinho Barcellos AS, Campos TMB, Cesar PF,
Amaral M, Kimpara ET. Effect of repeated firings and staining on
the mechanical behavior and composition of lithium disilicate.
Dent Mater. 2020;36(5):e149-57. http://doi.org/10.1016/j.
dental.2020.02.003. PMid:32061444.
16. Stawarczyk B, Dinse L, Eichberger M, Jungbauer R, Liebermann
A. Flexural strength, fracture toughness, three-body wear, and
Martens parameters of pressable lithium-X-silicate ceramics.
Dent Mater. 2020;36(3):420-30. http://doi.org/10.1016/j.
dental.2020.01.009. PMid:32007315.
17. Al-Thobity A, Alsalman A. Flexural properties of three lithium
disilicate materials: an in vitro evaluation. Saudi Dent J.
2021;33(7):620-7. http://doi.org/10.1016/j.sdentj.2020.07.004.
PMid:34803310.
18. Gozneli RKE, Ozkan Y. Flexural properties of leucite and lithium
disilicate ceramic materials after repeated firings. J Dent Sci.
2014;9(2):144-50. http://doi.org/10.1016/j.jds.2013.02.019.
19. Fan B-W, Zhu K-Q, Shi Q, Sun T, Yuan N-Y, Ding J-N. Effect of
glass thickness on temperature gradient and stress distribution
during glass tempering. J Non-Cryst Solids. 2016;437:72-9.
http://doi.org/10.1016/j.jnoncrysol.2016.01.008.
20. El-Etreby A, Metwally M, Elnaggar G. Effect of thermo-
mechanical aging and re-pressing on fracture resistance of
lithium disilicate crowns. Braz Dent Sci. 2021;24(3):1-9.
21. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A flexible
statistical power analysis program for the social, behavioral, and
biomedical sciences. Behav Res Methods. 2007;39(2):175-91.
http://doi.org/10.3758/BF03193146. PMid:17695343.
22. Richardson JTE. Eta squared and partial eta squared as
measures of effect size in educational research. Educational
Research Review. 2011;6(2):135-147. https://doi.org/10.1016/j.
edurev.2010.12.001.
23. Wang F, Chai Z, Deng Z, Gao J, Wang H, Chen J. Effect of heat-
pressing temperature and holding time on the microstructure
and flexural strength of lithium disilicate glass-ceramics. PLoS
One. 2015;10(5):e0126896. http://doi.org/10.1371/journal.
pone.0126896. PMid:25985206.
24. Sun Y, Ma L, Cui J, Feng L, Zhang Z, Yang Y,etal. Effects of heat-
treatment temperature and holding time on the microstructure
and mechanical properties of lithium disilicate glass-ceramics.
J Non-Cryst Solids. 2021;553:120502. http://doi.org/10.1016/j.
jnoncrysol.2020.120502.
25. Höland W, Rheinberger V, Frank M. Mechanisms of nucleation
and controlled crystallization of needle-like apatite in glass-
ceramics of the SiO2- Al2O3-K2O-CaO-P2O5 system. J
Non-Cryst Solids. 1999;253(1-3):170-7. http://doi.org/10.1016/
S0022-3093(99)00351-8.
26. Höland W, Rheinberger V, Schweiger M, Kelton KF, Haywood
BR. Control of nucleation in glass ceramics. Philos Trans R Soc
A Math Phys Eng Sci. 2003;361:575-89.
27. Apel E, van’t Hoen C, Rheinberger V, Höland W. Influence of
ZrO2 on the crystallization and properties of lithium disilicate
glass-ceramics derived from a multi-component system. J
Eur Ceram Soc. 2007;27(2-3):1571-7. http://doi.org/10.1016/j.
jeurceramsoc.2006.04.103.
28. Radwan A, Nouh I, Thabet A. Effect of multiple firing cycles
on the physical properties of three pressable lithium silicate
glass ceramics. Egypt Dent J. 2020;66(4):2633-9. http://doi.
org/10.21608/edj.2020.42266.1253.
29. Hamza TA, Sherif RM. Fracture resistance of monolithic
glass‐ ceramics versus bilayered zirconia‐based restorations.
J Prosthodont. 2019;28(1):259-64. http://doi.org/10.1111/
jopr.12684. PMid:29044828.
30. Albakry M, Guazzato M, Swain MV. Biaxial flexural strength
and microstructure changes of two recycled pressable glass
ceramics. J Prosthodont. 2004;13(3):141–9. http://doi.org/
10.1111/j.1532-849X.2004.04025.x. PMid:15345013.
31. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture
toughness and microstructure of a selection of all-ceramic
materials. Part I. Pressable and alumina glass-infiltrated ceramics.
Dent Mater. 2004;20(5):441-8. http://doi.org/10.1016/j.
dental.2003.05.003. PMid:15081550.
Mohamed Magdy El Shazli
(Corresponding address)
Fixed Prosthodontics Department, Faculty of Dentistry, Ain-Shams University,
Cairo, Egypt
Email: magdygeen@gmail.com
Date submitted: 2024 Feb 13
Accept submission: 2024 July 25