
15
Braz Dent Sci 2024 Oct/Dec;27 (4): e4552
Al-Banaa LR et al.
Antibacterial and remineralizing effects of orthodontic adhesive modified with nano-chitosan loaded with calcium phosphate
Al-Banaa LR et al. Antibacterial and remineralizing effects of orthodontic
adhesive modified by nano-chitosan loaded with calcium
phosphate
23. Gutiérrez MF, Malaquias P, Matos TP, Szesz A, Souza S, Bermudez
J,etal. Mechanical and microbiological properties and drug
release modeling of an etch-and-rinse adhesive containing
copper nanoparticles. Dent Mater. 2017;33(3):309-20. http://
doi.org/10.1016/j.dental.2016.12.011. PMid:28094025.
24. Topbasi NM, Benkli YA. Evaluation of the bond strength of
orthodontic brackets and the degree of polymerisation and
microhardness of an orthodontic adhesive using polyvawe
light curing unit and varying light densities. Braz Dent Sci.
2020;23(4):9. http://doi.org/10.14295/bds.2020.v23i4.2044.
25. Abdulhaddi A, Al Qassar SSS, Mohammed AM. Assessment
of the mechanical properties and antimicrobial efficiency of
orthodontic adhesive modified with
Salvadora
Persica
oil.
Ro J Stomatol. 2024;70(2):153-9. http://doi.org/10.37897/
RJS.2024.2.14.
26. Al-Banaa LR. Evaluation of microleakage for three types of
light cure orthodontic band cement. J Oral Biol Craniofac Res.
2022;12(3):352-7. http://doi.org/10.1016/j.jobcr.2022.04.004.
PMid:35514676.
27. Monteiro JB, Abreu RT, Salgado L, Paradella TC, Salgado IO,
Cilli R. Effect of shear bond strength of metallic orthodontic
brackets bonded with and without dental adhesive. Braz Dent
Sci. 2018;21(4):395-402. http://doi.org/10.14295/bds.2018.
v21i4.1597.
28. AlSamak S, Alsaleem NR, Ahmed MK. Evaluation of the shear
bond strength and adhesive remnant index of color change,
fluorescent, and conventional orthodontic adhesives: an in vitro
study. Int Orthod. 2023;21(1):100712. http://doi.org/10.1016/j.
ortho.2022.100712. PMid:36493626.
29. Abutayyem H. In-vitro investigation of the shear bond strength
of different orthodontic adhesives to enamel. J Pharm Bioallied
Sci. 2024;16(Suppl 3):S2473-5. http://doi.org/10.4103/jpbs.
jpbs_323_24. PMid:39346208.
30. Althagafi NM. Impact of fluoride-releasing orthodontic adhesives
on the shear bond strength of orthodontic brackets to eroded
enamel following different surface treatment protocols. J
Orthod Sci. 2022;11(1):3. http://doi.org/10.4103/jos.jos_139_21.
PMid:35282290.
31. Araújo IJS, Zanini MM, Favarão J, Rontani RMP, Correr AB, Sinhoreti
MAC. Bond strength of different orthodontic brackets produced
with different materials and fabrication methods. Braz Dent Sci.
2022;25(2):e3000. http://doi.org/10.4322/bds.2022.e3000.
32. Katyal D, Subramanian AK, Venugopal A, Marya A. Assessment
of wettability and contact angle of bonding agent with enamel
surface etched by five commercially available etchants: an
in vitro study. Int J Dent. 2021;2021:9457553. http://doi.
org/10.1155/2021/9457553. PMid:34659417.
33. Wege HA, Holgado-Terriza JA, Rosales-Leal JI, Osorio R, Toledano
M, Cabrerizo-Vílchez MA. Contact angle hysteresis on dentin
surfaces measured with ADSA on drops and bubbles. Colloids
Surf A Physicochem Eng Asp. 2002;206(1-3):469-83. http://doi.
org/10.1016/S0927-7757(02)00088-2.
34. Yaseen SN, Taqa AA, Al-Khatib AR. The effect of incorporation
Nano Cinnamon powder on the shear bond of the orthodontic
composite (an in vitro study). J Oral Biol Craniofac Res.
2020;10(2):128-34. http://doi.org/10.1016/j.jobcr.2020.03.008.
PMid:32309130.
35. EL-Awady AA, Al-Khalifa HN, Mohamed RE, Ali MM, Abdallah KF,
Hosny MM,etal. Shear bond strength and antibacterial efficacy
of cinnamon and titanium dioxide nanoparticles incorporated
experimental orthodontic adhesive: an in vitro comparative
study. Appl Sci. 2023;13(10):6294. http://doi.org/10.3390/
app13106294.
36. Gouvêa DB, Santos NM, Pessan JP, Jardim JJ, Rodrigues JA.
Enamel subsurface caries-like lesions induced in human teeth by
different solutions: a TMR analysis. Braz Dent J. 2020;31(2):157-63.
http://doi.org/10.1590/0103-6440202003123. PMid:32556015.
37. Taqa AA, Sulieman RT. Artificial saliva sorption for three
different types of dental composite resin: an in vitro study.
Al-Rafidain Dent J. 2011;11(3):296-302. http://doi.org/10.33899/
rden.2011.164465.
38. Reynolds IR. A review of direct orthodontic bonding. Br
J Orthod. 1975;2(3):171-8. http://doi.org/10.1080/03012
28X.1975.11743666.
39. Almeshal R, Pagni S, Ali A, Zoukhri D. Antibacterial activity
and shear bond strength of orthodontic adhesive containing
various sizes of chitosan nanoparticles: an in vitro study. Cureus.
2024;16(2):e54098. http://doi.org/10.7759/cureus.54098.
PMid:38487116.
40. Mohammed RR, Rafeeq RA. Evaluation of the shear bond strength
of chitosan nanoparticles-containing orthodontic primer: an
in vitro study. Int J Dent. 2023;2023:9246297. http://doi.
org/10.1155/2023/9246297. PMid:37577257.
41. Katyal D, Jain RK, Sankar GP, Prasad AS. Antibacterial,
cytotoxic, and mechanical characteristics of a novel chitosan-
modified orthodontic primer: an: in-vitro: study. J Int Oral
Health. 2023;15(3):284-9. http://doi.org/10.4103/jioh.
jioh_240_22.
42. Sorourhomayoun S, Alaghehmand H, Mahjoub S, Khafri S,
Ghasempour M. Shear bond strength of composite to primary
enamel teeth treated with different concentrations and various
molecular weights of chitosan. Casp. J. Dent. Res. 2021;10:35-41.
http://doi.org/10.22088/cjdr.10.1.35.
43. Xu T, Li X, Wang H, Zheng G, Yu G, Wang H,etal. Polymerization
shrinkage kinetics and degree of conversion of resin composites.
J Oral Sci. 2020;62(3):275-80. http://doi.org/10.2334/
josnusd.19-0157. PMid:32493864.
44. Machado AHS, Garcia IM, Motta ASD, Leitune VCB, Collares
FM. Triclosan-loaded chitosan as antibacterial agent for
adhesive resin. J Dent. 2019;83:33-9. http://doi.org/10.1016/j.
jdent.2019.02.002. PMid:30794843.
45. Putzeys E, Nys S, Cokic SM, Duca RC, Vanoirbeek J, Godderis
L,etal. Long-term elution of monomers from resin-based
dental composites. Dent Mater. 2019;35(3):477-85. http://doi.
org/10.1016/j.dental.2019.01.005. PMid:30704750.
46. Tanaka CB, Lopes DP, Kikuchi LN, Moreira MS, Catalani LH,
Braga RR,etal. Development of novel dental restorative
composites with dibasic calcium phosphate loaded chitosan
fillers. Dent Mater. 2020;36(4):551-9. http://doi.org/10.1016/j.
dental.2020.02.004. PMid:32089269.
47. Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V,
Panpisut P. Physical/mechanical and antibacterial properties
of orthodontic adhesives containing calcium phosphate and
nisin. J Funct Biomater. 2021;12(4):73. http://doi.org/10.3390/
jfb12040073. PMid:34940552.
48. Mahapoka E, Arirachakaran P, Watthanaphanit A, Rujiravanit R,
Poolthong S. Chitosan whiskers from shrimp shells incorporated
into dimethacrylate-based dental resin sealant. Dent Mater
J. 2012;31(2):273-9. http://doi.org/10.4012/dmj.2011-071.
PMid:22447062.
49. Altmann ASP, Collares FM, Balbinot GS, Leitune VCB, Takimi
AS, Samuel SMW. Niobium pentoxide phosphate invert
glass as a mineralizing agent in an experimental orthodontic
adhesive. Angle Orthod. 2017;87(5):759-65. http://doi.
org/10.2319/122417-140.1. PMid:28686093.
50. Kauppi MR, Combe EC. Polymerization of orthodontic adhesives
using modern high-intensity visible curing lights. Am J Orthod
Dentofacial Orthop. 2003;124(3):316-22. http://doi.org/10.1016/
S0889-5406(03)00402-5. PMid:12970666.