
12
Braz Dent Sci 2025 Apr/Jun;28 (2): e4595
Khuzaimah I et al.
is properly citePhysicochemical and antibacterial properties of ZnO nanoparticles-modified mineral trioxide aggregate hydrated with antibiotic/chitosan solution
Khuzaimah I et al. Physicochemical and antibacterial properties of ZnO
nanoparticles-modified mineral trioxide aggregate hydrated
with antibiotic/chitosan solution
a review. Eur J Dent. 2020;14(4):683-91. http://doi.
org/10.1055/s-0040-1713073. PMid:32726858.
2. Gürcan AT, Şişmanoğlu S, Sengez G. Effect of different adhesive
strategies on the microshear bond strength of calcium-silicate-
based materials. J Adv Oral Res. 2022;13(2):191-9. http://doi.
org/10.1177/23202068221118979.
3. Tsesis I, Elbahary S, Venezia NB, Rosen E. Bacterial colonization
in the apical part of extracted human teeth following root-end
resection and filling: a confocal laser scanning microscopy
study. Clin Oral Investig. 2018;22(1):267-74. http://doi.
org/10.1007/s00784-017-2107-1. PMid:28349219.
4. Kim H-J, Lee D, Cho S, Jang J-H, Kim SG, Kim S-Y. Improvement of
the bonding properties of mineral trioxide aggregate by elastin-
like polypeptide supplementation. Scanning. 2019;2019:3484396.
http://doi.org/10.1155/2019/3484396. PMid:31531154.
5. Pushpalatha C, Dhareshwar V, Sowmya SV, Augustine D,
Vinothkumar TS, Renugalakshmi A, et al. Modified mineral
trioxide aggregate - a versatile dental material: an insight
on applications and newer advancements. Front Bioeng
Biotechnol. 2022;10:941826. http://doi.org/10.3389/
fbioe.2022.941826. PMid:36017346.
6. Jang Y, Song M, Yoo IS, Song Y, Roh BD, Kim E. A randomized
controlled study of the use of proroot mineral trioxide
aggregate and endocem as direct pulp capping materials:
3-month versus 1-year outcomes. J Endod. 2015;41(8):1201-6.
http://doi.org/10.1016/j.joen.2015.03.015. PMid:25933707.
7. Mariyam M, Sunarintyas S, Nuryono N. Improving mechanical,
biological, and adhesive properties of synthesized mineral
trioxide aggregate by adding chitosan. Inorg Chem Commun.
2023;149:110446. http://doi.org/10.1016/j.inoche.2023.110446.
8. Subhi H, Husein A, Mohamad D, Nurul AA. Physicochemical,
mechanical and cytotoxicity evaluation of chitosan-
based accelerated portland cement. J Mater Res Technol.
2020;9(5):11574-86. http://doi.org/10.1016/j.jmrt.2020.07.108.
9. Hu D, Ren Q, Li Z, Zhang L. Chitosan-based biomimetically
mineralized composite materials in human hard tissue Repair.
Molecules. 2020;25(20):4785. http://doi.org/10.3390/
molecules25204785. PMid:33086470.
10. Mariyam M, Sunarintyas S, Yuliatun L, Irnawati D, Hatmanto
AD, Nuryono N. Physicochemical and antibacterial properties of
Zno/chitosan-modified mineral trioxide aggregate composites.
Case Stud Chem Environ Eng. 2024;9:100749. http://doi.
org/10.1016/j.cscee.2024.100749.
11. Khan G, Yadav SK, Patel RR, Nath G, Bansal M, Mishra B.
Development and evaluation of biodegradable chitosan films
of metronidazole and levofloxacin for the management of
periodontitis. AAPS PharmSciTech. 2016;17(6):1312-25. http://
doi.org/10.1208/s12249-015-0466-y. PMid:26689408.
12. Kassem AA, Ismail FA, Naggar VF, Aboulmagd E. Preparation
and evaluation of periodontal films based on polyelectrolyte
complex formation. Pharm Dev Technol. 2015;20(3):297-
305. http://doi.org/10.3109/10837450.2013.862262.
PMid:24438021.
13. Gao H, Ge K, Xu Y, Wang Y, Lu M, Wei Y,etal. Controlled release
of minocycline in hydroxyapatite/chitosan composite for
periodontal bone defect repair. Dent Mater J. 2022;41(3):346-
52. http://doi.org/10.4012/dmj.2021-217. PMid:35321974.
14. Sandra Devi L, Prijatmoko D, Joelijanto R, Prasetyarini S,
Herniyati, Soesetijo FXA,etal. The potential of avocado seed
extract (
Persea
americana
) in inhibiting the release of metal ions
in cuniti and stainless steel based orthodont wire. Int J Heal
Pharm. 2024;4(2):405-14. http://doi.org/10.51601/ijhp.v4i2.322.
15. Uwizeyimana JD, Kim D, Lee H, Byun J-H, Yong D. Determination
of colistin resistance by simple disk diffusion test using
modified Mueller-Hinton agar. Ann Lab Med. 2020;40(4):306-11.
http://doi.org/10.3343/alm.2020.40.4.306. PMid:32067429.
16. Indurkar AR, Sangoi VD, Patil PB, Nimbalkar MS. Rapid synthesis
of Bi2O3 nano-needles via ‘green route’ and evaluation of its
anti-fungal activity. IET Nanobiotechnol. 2018;12(4):496-9.
http://doi.org/10.1049/iet-nbt.2017.0070. PMid:29768236.
17. Al-Khodir FAI, Refat MS. Investigation of coordination ability
of Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) with metronidazole,
the antiprotozoal drug, in alkaline media: synthesis and
spectroscopic studies. Russ J Gen Chem. 2017;87(4):873-9.
http://doi.org/10.1134/S107036321704034X.
18. Wojnárovits L, Tóth T, Takács E. Critical evaluation of rate
coefficients for hydroxyl radical reactions with antibiotics:
a review. Crit Rev Environ Sci Technol. 2018;48(6):575-613.
http://doi.org/10.1080/10643389.2018.1463066.
19. Meretoudi A, Banti CN, Siafarika P, Kalampounias AG,
Hadjikakou SK. Tetracycline water soluble formulations with
enhanced antimicrobial activity. Antibiotics. 2020;9(12):845.
http://doi.org/10.3390/antibiotics9120845. PMid:33256054.
20. Li Q, Coleman NJ. Impact of Bi2O3 and ZrO2 radiopacifiers
on the early hydration and C–S–H gel structure of white
Portland cement. J Funct Biomater. 2019;10(4):46. http://doi.
org/10.3390/jfb10040046. PMid:31635346.
21. Kong H, Kwon KB, Park SJ, Noh WS, Lee SJ. Synthesis of C3S, C2S,
C3A powders using ultra-fine calcium oxide powder synthesized
from Eggshell and effect of C3A content on hardened mixed
aggregates. J Korean Powder Metall Inst. 2019;26(6):493-501.
http://doi.org/10.4150/KPMI.2019.26.6.493.
22. Morales-Melgares A, Casar Z, Moutzouri P, Venkatesh A,
Cordova M, Kunhi Mohamed A,etal. Atomic-level structure
of zinc-modified cementitious calcium silicate hydrate. J Am
Chem Soc. 2022;144(50):22915-24. http://doi.org/10.1021/
jacs.2c06749. PMid:36508687.
23. Eltohamy M, Kundu B, Moon J, Lee H-Y, Kim H-W.
Antibacterial zinc-doped calcium silicate cements: bone
filler. Ceram Int. 2018;44(11):13031. http://doi.org/10.1016/j.
ceramint.2018.04.122.
24. Chang SW. Chemical composition and porosity characteristics
of various calcium silicate-based endodontic cements.
Bioinorg Chem Appl. 2018;2018:2784632. http://doi.
org/10.1155/2018/2784632. PMid:29487618.
25. Hegde V, Arora S. Effect of intracanal medicaments on push-
out bond strength of smart-seal system. J Conserv Dent.
2015;18(5):414-8. http://doi.org/10.4103/0972-0707.164059.
PMid:26430308.
26. Bayer IS. Controlled drug release from nanoengineered
polysaccharides. Pharmaceutics. 2023;15(5):1364. http://doi.
org/10.3390/pharmaceutics15051364. PMid:37242606.
27. Fridland M, Rosado R. Mineral Trioxide Aggregate (MTA)
solubility and porosity with different water-to-powder ratios. J
Endod. 2003;29(12):814-7. http://doi.org/10.1097/00004770-
200312000-00007. PMid:14686812.
28. Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release,
porosity, solubility, and bioactivity of MTA plus tricalcium
silicate. J Endod. 2014;40(10):1632. http://doi.org/10.1016/j.
joen.2014.03.025. PMid:25260736.
29. Zbańska J, Herman K, Kuropka P, Dobrzyński M. Regenerative
endodontics as the future treatment of immature permanent
teeth. Appl Sci. 2021;11(13):6211. http://doi.org/10.3390/
app11136211.
30. Kang TY, Choi JW, Seo KJ, Kim KM, Kwon JS. Four different
commercial root-end filling materials: a comparitive study.
Materials. 2021;14(7):1693. http://doi.org/10.3390/ma14071693.