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AbstrAct

Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared 
to dental amalgam.  Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and 
composite undermines the restoration and leads to recurrent decay and failure.  The gingival margin of composite restora
tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier 
between the prepared tooth and the environment.    The intent of this article is to examine physico-chemical factors that 
affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergisti-
cally with mechanical forces to undermine the composite restoration.  The article will examine the various avenues that 
have been pursued to address these problems and it will explore how alterations in material chemistry could address the 
detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.
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IntroductIon

I. clInIcAl PerformAnce: comPosIte versus 
dentAl AmAlgAm restorAtIons

In 2005, 166 million dental restorations were 
placed in the United States [1] and clinical studies 
suggest that more than half were replacements 
for failed restorations. [2]  Replacement of failed 
restorations accounts for nearly 70% of all restorative 
dentistry [2] and the emphasis on replacement therapy 
is expected to increase as concern about mercury 
release from dental amalgam forces dentists to select 
alternative materials. The use of dental amalgam is 
being discontinued in response to global concerns 
about mercury in the environment. Dental amalgam 
is identified as one of the top five mercury-added 
products; it is rated #5 behind batteries, measuring 
devices, electric switches and relays, and mercury-
containing light bulbs. [3]  The most common 
alternative to dental amalgam is resin composite [4] 
but composite restorations have higher failure rates, 
more recurrent caries and increased frequency of 
replacement [2, 4-10]. 

In 2009, based on the review of dental records 
from 3,071 patients, Simecek and colleagues reported 
a significantly higher risk of replacement for posterior 
composite restorations as compared to amalgam [4].  In 
a study of amalgam and composite restorations placed 
by 243 Norwegian dentists, the mean age of failed 
amalgam was ~11 years while the mean age for failed 
composite was statistically significantly lower at 6 
years. [8] The need for additional treatment was 50% 
greater in children receiving composite restorations 
as compared to children treated with dental amalgam 
[11]  After nearly 4 decades of research the clinical 
lifetime of large to moderate posterior composite 
restorations continues to be approximately one-half 
that of dental amalgam [12].

The reduced clinical lifetime of moderate 
to large class II composite restorations can be 
particularly detrimental for our patients because 
removal of these restorations can lead to extensive 
loss of sound tooth structure.  For example, the 
removal of composite restorations produced 
significantly greater increases in cavity volume in 
comparison to the removal of amalgam [13].  The 
increase in cavity volume and increased frequency 
of replacement means that significantly greater 
amounts of sound tooth structure will be lost with 
treatment and re-treatment of class II composite 
restorations [13].  Over the lifetime of the patient, 

the additional loss of tooth structure will translate 
to more complex restorations and eventually 
total tooth loss. The reduced longevity, increased 
frequency of replacement and the need for a more 
complex restoration means increased costs to the 
patient in terms of both time and money [14].

II. comPosIte restorAtIon fAIlure  

The primary factor in the clinical failure of 
moderate to large composite restorations is secondary 
decay at the margins of the restorations [8]. As an 
example, in a study of radiographs from 459 adults, 
age 18-19 years, the investigators reported that among 
650 interproximal restorations the failure rate as a 
result of secondary or recurrent decay was 43% for 
composite as compared to 8% for amalgam [7].   In a 
separate study of amalgam and composite restorations 
placed in 8-12 year old children, the primary reason 
for failure of both materials was secondary decay, but 
secondary decay was 3.5 times higher in composite 
restorations [5].   

The development of secondary decay indicates 
that the seal at the composite/tooth interface is not 
resistant to the physical, chemical, and mechanical 
stresses that are present in the mouth (Figure 
1). Indeed, the clinical failure of moderate to 
large composite restorations has been linked to a 
breakdown of the bond at the tooth surface/composite 
material interface [12,15-20] and increased levels of 
the cariogenic bacteria, Streptococcus mutans, at the 
perimeter of these materials [21-25].  The breakdown 
of the composite/tooth bond has been attributed to the 
failure of our current adhesives to consistently seal 
and adhere to the dentin [2,20-29]. Results from both 
in vitro and in vivo studies indicate that failure of the 
adhesive/dentin (a/d) bond allows bacterial enzymes, 
oral fluids, and even bacteria to infiltrate the spaces 
between the tooth and composite [30]  (Figure 2).  The 
penetration of these agents into the spaces between 
the tooth and composite undermines the restoration 
and leads to recurrent caries, hypersensitivity, and 
pulpal inflammation [2,20,26,31,32]. 

Clinical studies report poor marginal adaptation, 
marginal discoloration, and loss of retention of 
the composite restoration when the a/d interface is 
exposed to the oral cavity 33.  Acid-etching provides 
effective mechanical bonding between the composite 
restoration and treated enamel, but breakdown at the 
dentin surface continues to threaten the long-term 
viability of moderate to large posterior composite 
restorations [18,20,22,31,34,35].  
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Figure 2 - Primary molar restored with posterior composite.  
Note staining at gingival margin indicating recurrent decay.  
Tooth was collected through protocol approved by the 
appropriate health sciences institutional review board.

Under clinical conditions, one can frequently 
detect a separation between the composite material 
and the tooth surface at the gingival margin 
[34].  Clinicians frequently find very little enamel 
available for bonding at the gingival margin of class 
II composite restorations and thus, the bond at this 
margin depends on the integrity of the seal formed 
with dentin.  The gaps at the gingival margin of class 
II composite restorations (Figure 3) have been related 
to very technique sensitive and unreliable dentin 
bonding [34,36].  

Figure 1 -  Radiographic image of primary teeth on right side.  a) The arrow denotes carious lesion on the proximal surface of 
mandibular right first primary molar. b) The arrow denotes the composite restoration on first primary molar. c) Radiographic 
image of primary teeth on right side, 2 years after figure 1b. The arrow denotes the failed class II composite restoration 
because of extensive decay. 

Figure 3 - X-ray micro-CT image of molar restored with composite restoration.  Note dark region in proximity of gingival 
margin suggesting gap formation.
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The gingival margin in class II composite 
restorations is the most common location of bonding 
failures [37].  Purk and colleagues [38] compared 
the microtensile dentin bond strength of gingival and 
proximal cavity walls of class II restorations.  Their 
results showed that the dentin adhesive bond of 
composites to gingival walls was significantly weaker, 
and thus, at increased risk of failure compared to the 
bond to proximal walls.  

Spectroscopic results from a separate study 
indicated a twofold difference in the depth of dentin 
demineralization at the gingival and proximal margins 
[29].  The differences in demineralization depth may 
be due to less mineralized dentin at the gingival 
margin.  For example, the mineral/matrix ratio in 
dentin at the gingival margin was less than half the 
ratio at the proximal wall.  Less mineral and increased 
density and size of the tubules [39] translate to faster 
and deeper etching at the gingival margin as compared 
to the proximal wall.     

Although dentin etching was deeper, there was 
considerably less adhesive penetration at the gingival 
margin as compared to the proximal wall [29].  This 
discrepancy between etching depth and adhesive 
penetration led to a large area of exposed collagen at 
the gingival margin.  It was suggested previously that 
adhesives could infiltrate dentin at the gingival margin 
more efficiently because of the increased number of 
tubules per unit area [40].  However, water content 
is higher in dentin at the gingival margin.  This is not 
only because of the water already present within the 
demineralized dentin matrix, but also because patent 
tubules contribute to the contamination of the prepared 
surface with a great amount of dentinal fluid [41].  
The cumulative effect of the increased water leads 
to reduced adhesive infiltration and lower monomer/
polymer conversion of the adhesive at the gingival 
margin as compared to the proximal wall [29].  Under 
in vitro conditions, adhesive monomers or oligomers 
and unprotected collagen at the gingival margin of 
Class II composite restorations undergo hydrolytic 
degradation after 90-days aqueous storage [28].

III. dentIn bondIng & the hybrId lAyer  

Based on numerous morphologic investigations and 
bond strength studies [42-46] it is generally accepted 
that the primary factors critical in determining an 
adequate a/d bond are: wetting of the dentin substrate 
by components of the adhesive system [42,47] and 
micromechanical interlocking via resin penetration 
and entanglement of exposed collagen fibrils in the 

demineralized dentin [48-50].  Morphologic evidence 
of resin penetration of the exposed collagen fibrils 
was first reported by Nakabayashi [51] and he called 
the distinct zone between the bulk adhesive and 
the non-demineralized dentin the ‘hybrid layer’.  
Current adhesive systems that acid etch the dentin 
characteristically bond via hybridization [52].   

The hybrid layer is formed when an adhesive 
resin penetrates a demineralized or acid-etched dentin 
surface and infiltrates the exposed collagen fibrils.  
During acid etching, the mineral phase is extracted 
from a zone that measures between 1 and ~10 µm of 
the dentin surface [53-55].  The composition of the 
exposed substrate differs radically from mineralized 
dentin.  For example, mineralized dentin is 50% 
mineral, 30% collagen, and 20% water by volume 
[56], whereas demineralized dentin is 30% collagen 
and 70% water [53-57].  With removal of the mineral 
phase, the collagen fibers are suspended in water.  If 
there is a substantial zone of demineralization and the 
water supporting the collagen network is removed 
either by air drying or the action of an air syringe the 
collagen will collapse [57-59].  A collapsed collagen 
network reduces the porosity and inhibits resin 
penetration through the demineralized layer[57]. 
It forms a barrier between the demineralized layer 
and the underlying intact or unreacted dentin 
surface [46,59,60].  A collapsed collagen network 
compromises the a/d bond [46,53,58,59] as well as 
the marginal integrity of the composite restoration. 

III.A. Wet bonding 

In the early 1990s, wet bonding was introduced to 
counteract the problems of collagen collapse [48,61-
64].  Wet bonding means that the dentin is kept fully 
hydrated throughout the bonding procedure; the 
surface morphology of the demineralized layer does 
not change because the water supporting the collagen 
matrix is not removed [65].  Bond strength results 
[48,61-64] with “wet” bonding support these findings, 
that is, the higher bond strengths with this technique 
reflect the minimal collapse of “wet” versus air-dried 
dentin collagen[57].  It is speculated that moist dentin 
provides a more porous collagen network and that 
increased porosity means more space for adhesive 
infiltration[43,46,57,61-63].  

With wet bonding techniques, the channels 
between the demineralized dentin collagen fibrils 
are filled with water, solvent, conditioner, and/or 
oral fluids[57,66].  The only mechanism available 
for adhesive resin infiltration is diffusion of the resin 
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into whatever fluid is in the spaces of the substrate 
and along the collagen fibrils.  Ideally, the solvent 
in combination with hydrophilic monomers, (e.g. 
hydroxyethyl methacrylate (HEMA)) conditions 
the collagen to remain expanded during adhesive 
infiltration. However, HEMA, a primary component 
in many single bottle commercial dentin adhesives, 
can dramatically reduce the evaporation of water[67].  
The addition of HEMA reduces the mole fraction 
of water and therefore reduces the partial pressure 
of water (Dalton’s law of partial pressures).  As the 
partial pressure of water drops it becomes more and 
more difficult to remove residual water from the 
demineralized dentin matrix. Hydrophobic monomers, 
such as 2,2-bis[4(2-hydroxy-3-methacryloyloxy-
propyloxy)-phenyl] propane (BisGMA), would resist 
diffusing into these sites where there is residual 
water[50,68,69].  

Under in vivo conditions, there is little control 
over the amount of water left on the tooth.  As a result, 
it is possible to leave the dentin surface so wet that 
the adhesive actually undergoes physical separation 
into hydrophobic and hydrophilic-rich phases [68].  
Results from our laboratory indicated that excess 
moisture prohibited the formation of an impervious, 
structurally integrated a/d bond at the gingival margin 
of Class II composite restorations[28,29].  Clinicians 
must routinely attempt to bond to naturally wet 
substrates such as caries-affected dentin [70] or deep 
dentin[71-74].  The water content of caries-affected 
dentin has been reported to be 2.7 times greater than 
that of normal dentin[70].  In deep dentin, 22% of 
the surface area is exposed tubules while exposed 
tubules account for 1% of the surface area of dentin 
close to the DEJ[75].  The large increase in surface 
area attributable to tubules means that in deep dentin, 
pulpal fluid will contribute additional moisture to 
that already present within the demineralized dentin 
matrix.  Since our current adhesives are very sensitive 
to excess moisture, bonding to these clinically relevant 
substrates is a formidable challenge[74,76-78].

III.B. Sensitivity of adhesive to wet bonding 
conditions

The sensitivity of our current adhesives to excess 
moisture is reflected in the water-blisters that form in 
adhesives placed on over-wet surfaces [79-81] and 
adhesive phase separation that leads to very limited 
infiltration of the critical dimethacrylate component 
[50,68,82].  The optimum amount of wetness varies as 
a function of the adhesive system [83].  Additionally, 

it is impossible to simultaneously achieve uniform 
wetness on all of the walls of the cavity preparation 
[84].  Wet bonding is, in short, a very technique-
sensitive procedure and optimum bonding with our 
current commercial adhesives occurs over a very 
narrow range of conditions, e.g. water content [73].  

One suggested approach to these problems is 
“ethanol-wet bonding” [33,85]. A concern with this 
method is that in the clinical setting this solvent 
may be diluted because of repeated exposure of the 
material to the atmosphere or concentrated because 
of separation of the bonding liquids into layers 
within the bottle.  Results from our lab have shown 
an inverse relationship between mechanical and 
thermal properties and the concentration of ethanol 
that is present during photo-polymerization of model 
BisGMA-based adhesives [86].  In addition, the 
hybridization process is very sensitive to the ethanol 
content in the adhesive system [78].  Although the 
effect of “ethanol-wet bonding” on durability is not 
known, results from our lab suggest that this approach 
will not overcome the clinical challenges associated 
with a/d bonding.

Current strategies to promote bonding of the 
resinous materials to intrinsically wet substrates also 
include the incorporation of ionic and hydrophilic 
monomers into the adhesive [87]. These adhesives 
etch and prime simultaneously, thus addressing the 
problems of collagen collapse and simplifying the 
bonding protocol.  Unfortunately, the hydrophilic 
nature of these components enhances water sorption 
and hydrolytic breakdown in the mouth [84,87-
90].  With these systems, the bonded interface 
lacks a nonsolvated hydrophobic resin coating and 
thus, the resultant hybrid layers behave as semi-
permeable membranes permitting water movement 
throughout the bonded interface even after adhesive 
polymerization [33].  The higher concentration of 
hydrophilic monomers in these systems is associated 
with decreased structural integrity at the a/d 
interface [33,91]. In vivo aging studies have reported 
degradation of the a/d bond at 1-year even when the 
bonded dentin was protected by enamel from direct 
exposure to the oral environment [92].  These results 
suggest that hydrophilicity and hydrolytic stability of 
resin monomers are generally antagonistic [84].

Iv. IdeAl hybrId lAyer

It is generally accepted that the fundamental 
processes involved in bonding an etch-and-rinse 
adhesive to dentin are: removal of the mineral phase 
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from the dentin without altering the collagen matrix 
and filling the voids left by the mineral with adhesive 
that undergoes complete in situ polymerization.  
Ideally, the resultant resin-reinforced or hybrid layer 
would be a 3-dimensional polymer/collagen network 
that would provide both a continuous and stable 
link between the bulk adhesive and dentin substrate. 
There is substantial evidence to suggest that this ideal 
objective is not achieved. [28,49,50,69,77,82,93-97]  
Instead of serving as a stable connection between the 
bulk adhesive and subjacent intact dentin, the hybrid 
layer has been called the weakest link in the adhesive/
dentin (a/d) bond [98].

IV.A. Degradation of the hybrid layer

Degradation of the hybrid layer could be broadly 
divided into 2 major categories: hydrolytic degradation 
of the collagen matrix and hydrolytic degradation of 
the adhesive within the hybrid layer. [99] It has been 
hypothesized that the in vivo degradation of the hybrid 
layer follows a cascade of events that begins when the 
dentin is acid-etched. [100,101]   Disruption of the 
tooth structure by acid-etching exposes and activates 
proteolytic enzymes, e.g. matrix metalloproteinases 
(MMPs) which can degrade the exposed collagen 
component of the hybrid layer. [102,103] Degradation 
of the hybrid layer by MMPs is expected to be most 
important acutely in the period following adhesive 
application. 

Investigators have sought to address the impact of 
MMPs using techniques that would remineralize the 
collagen that is not infiltrated by adhesive. [104]While 
remineralizing the exposed collagen within the hybrid 
layer is interesting, other investigators have reported 
that an adhesive that replaces the spaces occupied 
by free and loosely bound water within the exposed 
collagen (demineralized dentin matrix) inhibits MMP 
activity. [105,106] Cationic quaternary ammonium 
methacrylates also inhibit MMP activity.[107]  

Chronic deterioration of the hybrid layer involves 
hydrolysis and leaching of the adhesive that has 
infiltrated the collagen (demineralized dentin matrix). 
[50,69,99,108,109]  Leaching is facilitated by water 
ingress into the loosely cross-linked or hydrophilic 
domains of the adhesive.  The hydrophilic domain 
exhibits limited monomer/polymer conversion 
because of adhesive phase separation [68] and lack of 
compatibility between the hydrophobic photoinitiator 
and hydrophilic phase. [110,112]The poorly 
polymerized hydrophilic phase degrades rapidly in 
the aqueous environment.  Resin elution continues 

to occur through the nanoleakage channels; water 
movement along the length and breadth of the hybrid 
layer becomes more rapid as transport pathways form 
relatively large water-filled channels. [33,83,113] 
The previously resin-infiltrated collagen matrix 
is exposed and vulnerable to attack by proteolytic 
enzymes[114,115]. 

The structure of methacrylate adhesives suggests a 
general mechanism for their chemical and enzymatic 
degradation in the mouth.  On prolonged exposure of 
the restoration to oral fluids water begins to penetrate the 
resin.  Water initially enters the matrix by diffusion into 
loosely cross-linked or hydrophilic domains or may be 
trapped within the matrix during photopolymerization. 
[70,116] Portions of the matrix may be directly exposed 
to oral fluids, particularly at the gingival margin of 
Class II and V composite restorations.  Mechanical 
wear of the exposed adhesive may further accelerate 
matrix degradation by abrading the surface, increasing 
the surface area and allowing greater ingress of both 
water and enzymes. The presence of water promotes 
the chemical hydrolysis of ester bonds in methacrylate 
materials.  This reaction is expected to be relatively 
slow at the neutral pH typical of saliva, but excursions 
in pH caused by foods or cariogenic bacteria may lead 
to transient acid or base catalysis.  The carboxylate and 
alcohol degradation products of ester hydrolysis are more 
hydrophilic than the parent ester, further enhancing the 
local ingress of water.  Over years of exposure to salivary 
fluids, local domains of the methacrylate network may 
become sufficiently degraded and/or hydrophilic to 
permit access by esterases, which greatly accelerate ester 
bond hydrolysis.  

Human saliva contains a variety of enzymes which 
may participate in the degradation of the adhesive as well 
as the composite [89,92,117-121]. The susceptibility of 
acrylate dental materials to degradation by esterases is 
well established [119,122-126]. The esterase-catalyzed 
degradation of monomethacrylates, dimethacrylates and 
commercial dental resins has been documented in solution 
[122-124,126], in saliva samples [124,125,127], and in 
vivo [92]. In vitro studies have typically used one or more 
of the following esterases: cholesterol esterase (CE; EC 
3.1.1.13) [122,124,126] acetylcholinesterase (ACHE; 
EC 3.1.1.7) [122,126] and pseudocholinesterase (PCE, 
aka butyrylcholinesterase; EC 3.1.1.8) [122,124,126]. 
Human saliva samples have been shown to contain 
CE and PCE activity in sufficient quantity to degrade 
composite resins [124,128]. In vitro degradation of 
dimethacrylates (BisGMA, TEGDMA) in the presence of 
PCE and CE was reduced by a specific esterase inhibitor, 
phenylmethylsulfonyl fluoride [124], supporting an 
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esterase-catalyzed mechanism of degradation. Esterases 
in solution and in saliva catalyze the hydrolysis of both 
soluble methacrylate monomers and polymer particulates 
[125,126], suggesting that solid dental restorations are 
directly susceptible to esterase attack. Monomers and 
polymers of the monomethacrylates (e.g., HEMA) have 
been shown to be more resistant to esterase digestion (by 
ACHE, CHE) than the dimethacrylates [126]. CE and 
PCE have been shown to act synergistically in degrading 
dimethacrylates (BisGMA, TEGDMA) in vitro [122]. A 
modified dimethacrylate containing urethane segments 
(urethane-modified BisGMA) showed up to an 86-fold 
reduction in CE-catalyzed degradation relative to the 
unmodified control (BisGMA) [123]. This enhanced 
esterase resistance was attributed to the chemistry of 
the modified dimethacrylate, particularly the greater 
hydrophobicity and hydrogen-bonding capability of the 
urethane segments [123]. Dimethacrylates containing 
aromatic functional groups or branched methacrylate 
linkages have also shown greater esterase resistance 
[126].

Although many factors may contribute to the 
breakdown of methacrylate adhesives, their chemical 
“Achilles heel” may be the ester linkages.  Indeed, 
the breaking of covalent bonds within the polymer 
by addition of water to ester bonds is considered one 
of the main reasons for resin degradation within the 
hybrid layer [83,84].  When exposed to oral fluids, 
the ester bonds within the methacrylate matrix are 
vulnerable to two forms of hydrolytic attack: (i) 
chemical hydrolysis catalyzed by acids or bases, 
and (ii) enzymatic hydrolysis catalyzed by salivary 
enzymes, particularly esterases.  Both require the 
presence of water in close association with the bond 
that will be hydrolyzed. Resin degradation is also 
directly related to water sorption and high water 
sorption has been reported for hydrophilic resin 
systems [70,129].  These relationships highlight the 
challenges associated with the development of an 
adhesive that is resistant to hydrolytic attack, but also 
miscible with wet demineralized dentin matrices and 
compatible with our current dental composites.   

IV.B. Strategies 

Our strategy for reducing the hydrolytic 
degradation of methacrylate adhesives while also, 
promoting bonding to wet dentin has involved a 
three-pronged scheme.  Molecular and mechanical 
modeling were used in conjunction with synthesis 
of new methacrylate monomers and multi-scale a/d 
interfacial characterization. [130,135] Methacrylate 

side chains have been selectively modified so that they 
were both water compatible and esterase resistant. 
[136-140]This was accomplished by using bulky and/
or branched functional groups that were poor esterase 
substrates but sufficiently hydrophilic to be water 
compatible. Water-compatible photoinitiators were 
developed as a means of promoting monomer/polymer 
conversion and thus, reducing the susceptibility 
to esterase hydrolysis by reducing the number of 
unreacted pendant groups [ 11,112,141-143].  

Complementary techniques were used to provide 
in situ detection of the interfacial molecular structure 
and micro-mechanical features of the a/d interface.  
The experimental program did not, however, provide 
complete constitutive behavior.  Instead, it provided 
fragmented information that had to be interpreted and 
unified.  

In general, material constitutive behavior critically 
depends upon the mechanisms that occur at scales 
smaller than the material-scale.  Thus, our research 
team developed modeling methodologies to account 
for these underlying mechanisms.  The modeling 
in conjunction with our multi-scalar structure/
property characterization has allowed us to project 
the long-term mechanical durability of the novel 
water-compatible, esterase-resistant adhesives 
under conditions that simulate function in the 
mouth [28,29,49,50,54,68,69,74,76,82,111,131,133-
140,143-160] . 

In summary, factors that prohibit the formation of 
an ideal hybrid layer and a durable a/d bond include 
inadequate monomer/polymer conversion, adhesive 
phase separation, water sorption and hydrolysis of the 
adhesive. These factors may be addressed by using 
an iterative combinatorial optimization (molecular 
design)/synthesis approach in conjunction with a/d 
interfacial multi-scale characterization and modeling 
to design, synthesize and develop water-compatible, 
esterase-resistant methacrylate-based dentin adhesives 
[28, 29, 49, 50, 54, 55, 68, 69, 74, 76, 78, 82, 86, 
96, 97, 110, 112, 131, 137, 138, 140, 144, 145, 
147, 150, 154, 155, 158-169].  Finite element (FE) 
modeling is used to project the long-term mechanical 
durability of the new adhesives under conditions that 
simulate function in the mouth [149,150]. 

v. bIofIlms, dentAl PlAque And s. mutAns

The failure of the a/d bond in concert with reports of 
increased levels of cariogenic bacteria at the perimeter 
of composite materials points to an interesting interplay 
between microbiology and adhesive degradation as 
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key elements in the premature failure of moderate-to-
large composite restorations.  Adhesion of S. mutans 
to surfaces in the mouth creates an environment that 
supports the subsequent attachment and growth of 
other bacterial species, ultimately forming a micro-
ecosystem known as a biofilm.  

In the oral cavity, microorganisms mainly 
exist as biofilms on saliva-coated surfaces, e.g. 
teeth, restorative materials, and so forth.  The key 
interaction in the initiation of biofilm development is 
the adhesion of primary microorganisms to a surface.  
The pioneer bacteria then recruit other bacteria by 
providing a new surface and metabolic products that 
facilitate the succeeding attachments. Streptococci 
constitute >60% of the bacteria found in the early 
communities in saliva-coated tooth enamel. [170] The 
initial colonization involves interaction of bacterial 
cell surface proteins with saliva components (dental 
pellicle) adsorbed to the tooth surface.   Salivary 
agglutinin, a ~400 kDa oligomeric complex of 
the cysteine-rich glycoprotein gp340, is the key 
component of the saliva that mediates the attachment 
with the bacterial cell surface proteins. [171]  For 
cariogenic S. mutans, antigen I/II (AgI/II), also known 
as SpaP or P1, is the cell surface protein that interacts 
with gp340 to attach them to dental pellicle. 

[172] After the initial attachment, S. mutans 
synthesizes glucans (extracellular polysaccharides) 
from sucrose when it is present, by glucosyltransferases 
(GTFs). The glucans then interact with glucan-binding 
proteins (GBPs) and with the glucan-binding domain 
of GTFs, both of which are present at the surface of 
S mutans.  The primary aggregation of these bacteria 
on the tooth surface serves as a platform for the 
attachment of other bacteria for the accumulation of 
biofilms, known as dental plaques.  Thus, the key 
step in the accumulation of dental plaque is the initial 
interaction of bacterial P1 protein with the salivary 
agglutinin gp340.

v.A. sAlIvAry AgglutInIn gP340

Investigators have reported a positive correlation 
of the protein, gp340, with caries experience and 
saliva adhesion of S. mutans. [173] Specific amino 
acid sequences involved in P1 interaction with gp340 
have been identified, [174] and peptide vaccines 
based on these sequences have been shown to be 
effective in preventing S. mutans attachment both in 
vitro and in clinical trials. [175] We are intrigued by 
the role of the solid surface in S. mutans attachment, 
particularly with regard to its influence on the critical 

protein-protein interactions. These effects are not 
well understood at the molecular level. While there 
have been studies documenting surface effects on S. 
mutans attachment [176-178] most have employed 
whole-cell assays of attachment. These studies have 
helped to demonstrate that the surface does, in fact, 
influence bacterial attachment, but provide little 
information on the particular chemical interactions 
involved. Lack of information at the chemical level 
precludes the rational design of materials that limit 
bacterial adhesion, since the relevant structure-
property relationships are not known.  

Studies by Ligtenberg and others [179] have 
suggested that the interaction of S. mutans with 
the surface is influenced by the extent of gp340 
binding.  It is not known how gp340 interacts with the 
methacrylate adhesive, but this information is vital 
for understanding how the biofilm is anchored to the 
adhesive surface. A common approach used to identify 
specific regions of a protein involved in interaction 
with another macromolecule is to cleave the protein 
into smaller peptide fragments and determine which 
pieces bind to the partner. The salivary agglutinin 
gp340 was cleaved in this manner, and the fragment 
primarily responsible for interaction with P1 from 
S. mutans was identified. [174] Once an interacting 
fragment is identified, higher-resolution analyses 
can be performed to map the chemical moieties in 
the peptide that directly participate in binding, e.g. a 
methyl group from an Ala. Solution nuclear magnetic 
resonance (NMR) spectroscopy is a suitable tool for 
assessing such site-specific interactions, even when 
they are weak (μM-mM KD) as is often the case with 
peptides. Several NMR experiments reveal binding 
sites between peptide fragments and large molecules. 
The bound conformation of the peptide can be 
determined and this information used to understand 
how binding occurs. [180] Cross-validation of 
the involvement of specific moieties is performed 
by modifying the peptide slightly by blocking or 
removing specific interactions.

V.B. Novel interventions 

Adhesion of S. mutans to surfaces in the mouth 
creates an environment that supports the subsequent 
attachment and growth of other bacterial species, 
ultimately forming a micro-ecosystem known as a 
biofilm.  Dental plaque biofilm cannot be eliminated, 
[181] but the pathogenic impact of the biofilm at 
the margin of the composite restoration could be 
reduced by engineering novel dentin adhesives that 
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limit gp340/S. mutans attachment and neutralize 
the micro-environment to prevent damage (by lactic 
acid) to the adjacent tooth structure. Clearly, any 
change in the chemical structure will likely alter other 
mechanical and physicochemical properties.  The 
optimal adhesive will be produced by balancing the 
desired physical, chemical and mechanical properties 
with the need for limited gp340/S. mutans attachment 
and neutralization capabilities.  The combinatorial 
optimization approach allows the relative importance 
of each property to be varied and predicts novel 
methacrylate structures for further evaluation [131]. 

Lactic acid (LA) is the primary compound 
produced during acidification of the oral cavity by 
microbes. As such, we have developed an NMR-
based assay for detecting the solution pH and changes 
in pH of samples containing lactic acid. Because LA 
is acidic, the addition of basic monomeric units or 
hydrated polymers that contain buffering moieties 
alters the pH of the sample. The degree of change 
can be tracked and the buffering capacity quantified 
using our approach. The NMR chemical shift is 
extremely sensitive to small changes that most other 
methods cannot detect, making it an excellent probe 
for monitoring perturbations to the nucleus of interest. 
Here, the chemical shift of the carbonyl 13C in LA has 
been correlated with pH and monitored as a function 
of increasing concentration of monomer (Figure 4). 

Figure 4 -Three-dimensional plot of pH vs 13C NMR 
chemical shift (ppm) of the carbonyl group (C=O) from 
lactic acid (LA) in solutions titrated with increasing 
concentrations of HEMA or DMAEMA monomers. HEMA 
does not alter the pH of the 0.1 M LA solution, whereas 
increasing amounts of DMAEMA demonstrate obvious 
buffering and neutralization.

As can be seen in this plot, inclusion of HEMA, 
the monomer currently used in the methacrylate 
dentin adhesive, even at high concentration in the 
LA solution, has no impact on the pH of the solution, 
and it cannot buffer or neutralize LA. The addition 
of increasing amounts of 2-dimethyl-aminoethyl 
methacrylate (DMAEMA), which contains a basic 
amine, does however, shift the pH of the acidic LA 
solution making it more neutral.  These data show that 
neutralization can be achieved by monomers such as 
DMAEMA and that the buffering capacity can be 
measured in a simple NMR experiment using LA as 
a probe [152] . 

vI. summAry
In summary, the a/d bond can be the first defense 

against substances that may penetrate and ultimately 
undermine the composite restoration in vivo.  In vitro 
and in vivo studies have suggested that several factors 
inhibit the formation of a durable a/d bond.  These 
factors include: 1) water sorption and hydrolysis of 
the adhesive resin; 2) inadequate monomer/polymer 
conversion of the infiltrating adhesive; 3) incomplete 
resin infiltration; 4) incomplete solvent evaporation 
[ 78,86,182,183]; 5) enzymatic challenges within 
the cavity preparation [100]; 6) surface degradation 
by biofilms; and 7) substrate characteristics 
[76,78,161,184-187]. However, as indicated in a 
recent review of dental composite, the properties 
of the materials are one part of a complex problem 
[188].  The success of clinical restorations depends 
on a variety of factors including proper technique, 
appropriate materials and proper patient selection 
[188].
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resumo

Restaurações em resina composta apresentam elevada taxa de falhas, recorrência de cárie e maior necessidade de troca 
quando comparadas às restaurações em amálgama. A penetração de enzimas bacterianas, fluidos orais e da própria 
bactéria nas fendas existentes entre o dente e o compósito, enfraquecem a restauração e levam à  recorrência de cárie e 
falhas. A margem gengival das restaurações em resina composta é particularmente vulnerável à cárie e, nesta margem, o 
adesivo e o selamento dentinário funcionam como a primeira bareira entre o dente preparado e o ambiente oral. O objetivo 
deste artigo de revisão é examinar os fatores físico-químicos que afetam a integridade e a durabilidade da interface de 
adesão adesivo/dentina e explorar como esses fatores agem sinergicamente para minar a restauração de resina composta. 
A revisão irá examinar as diversas possibilidades para solucionar esses problemas, bem como explorar como alterações 
na química dos materiais poderiam solucionar o impacto negativo do estresse físico-químico na interface adesiva com a 
dentina.
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