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RESUMO
Objetivo: Este estudo avaliou, “in vitro”, as 
microdeformações geradas ao redor de três implantes 
de hexágono externo posicionados linearmente 
após carregamentos estáticos em pontos não axiais 
de supraestruturas de Co-Cr. Métodos: Em um 
bloco de poliuretano, foram inseridos os implantes 
e parafusados os pilares protéticos microunit com 
torque de 20 Ncm. Na superfície do bloco foram 
colados quatro extensômetros adjacentes aos 
implantes, sendo dois para o central. Sobre os pilares 
foram parafusados supraestruturas fundidas em liga 
de Co-Cr (n = 5) com torque de 10 Ncm. As cargas 
verticais estáticas de 30 kg foram aplicadas durante 
10 segundos sob 3 repetições em quatro pontos não 
axiais localizados perpendiculares ao longo eixo (A 
e B)  e em outros dois pontos na extremidade da 
supraestrutura (A`e B`). Os dados foram registrados 
com auxílio de um condicionador de sinais elétricos 
e do software Strain-Smart e os resultados obtidos 
foram submetidos à Análise de Variância (ANOVA) 
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Resultados: A apresentação dos resultados foi 
realizada em forma gráfica e descritiva. Conclusão: 
Pode-se concluir de acordo com as análises 
estatísticas que não houve diferença significante nos 
efeitos principais e interação do presente estudo (p 
= 0,6464). Nas estatísticas tabuladas não houve 
diferença entre as médias nos deslocamentos, 3 mm 
e 5 mm (p = 0,8731).

Análise extensométrica de cargas não axiais em próteses de três elementos, implantossuportadas

ABSTRACT

Objective: This study evaluated “in vitro”, the 

microstrain around three external hexagon implants 

linearly placed after static loadings on non-axial points 

of Co-Cr superstructures. Methods: The implants 

were inserted into a polyurethane block and their 

microunit prosthetic abutments were screwed with 

torque of 20 Ncm. Four strain gauges were linked to 

the block around the implants. Onto the abutments, 

Co-Cr superstructures (n = 5) were screwed with 

torque of 10 Ncm. The static vertical loads of 30 kg 

were applied for 10 s during 3 repetitions in four non-

axial points located perpendicularly to the long axis 

(A and B) and another two points at the extremity 

of the superstructure (A` and B`). The data were 

recorded with the aid of a conditioner of electrical 

signals and the Strain-Smart software. Results: 

The results obtained were submitted to Analysis 

of Variance (ANOVA). Conclusion: It could be 

concluded that there were no significant differences 

in the effects of the applications of non-axial loads of 

this present study (p = 0.6464). Also, there were no 

differences between the displacement means, 3 mm 

for A and B; 5 mm for A’ and B’ (p = 0.8731).
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IntRoDuctIon

The use of dental implants for oral 
rehabilitation of either total or partial 

edentulous arches has been applied to replace 
lost teeth, depending on the alveolar bone [1,2]. 
To perform these treatments, there are available 
in the dental market, three types of abutments, 
as follows: external hexagon, internal hexagon, 
and cone morse. External hexagon implants can 
be attached by a metallic bar and be used to 
construct a fixed partial or total prosthesis [3].

In fixed prosthesis rehabilitation, the 
occlusal forces are directly applied onto the 
prosthesis and transmitted to the bone/implant 
interface and the maintenance of the peri-
implantar bone tissue should be the primordial 
fact to achieve long-term treatment success. 
Currently, it has been searched to reduce the 
biomechanical force at the bone/implant interface 
[4], because the increase of the mechanical 
stimulus may result in a bone strengthening 
through density and apposition, by respecting 
a threshold; however, mechanical stimuli above 
this threshold results in microdamage due to 
fatigue [5,6,7].   In Dentistry, varied computed-
based programs can be used (such as computed 
guided surgeries) to evaluate the efforts of the 
bone structures and the statistical analysis of 
the clinical procedures [8]. The birefringence 
analysis, the strain gauge, and the bond strength 
studies between the implant and bone tissues, 
according to Spiekermann 1995, have been 
the main methods for biomechanical analysis 
and investigation. The strain gauge technique 
has been used to evaluate stresses in implant-
supported prosthesis both in vitro [10,11], and 
in vivo [12,13].

Some failures of the implant system have 
been associated with occlusal overload as the 
primary factor [8,14,15,16]. As the main factor, 
it has been emphasized the lack of biomechanical 
concepts [17].

In this context, this study aimed to 
evaluate the microstrain of 3 implants with 
external hexagon abutments, placed linearly 
after the static loading onto non-axial points of 
Cobalt-Chromium superstructures simulating 
fixed implant-supported prostheses.

Strain Gauge analysis of non-axial loads in 
three-element implant-supported prostheses

mAteRIAl AnD methoDs

A polyurethane block (F-16 Polyurethane Axson, 
Cercy – France) was constructed from a silicone 
mold (Clássico artigos odontológicos, Catanduva- 
São Paulo, Brazil) and after the polishing of all 
surfaces with the aid of 220- to 660-grit sandpapers, 
a surface with a small amount of irregularities were 
obtained with final dimensions of: 95 mm of lenght 
x 45 mm of width x 20 mm of height .

To achieve a linear positioning of the external 
hexagon implants (AS Technology Titanium Fix, 
São José dos Campos – Brazil), an aluminum matrix 
was machined and composed of three components. 
These components were superimposed and had 
perforations that enabled the screwing of specific 
screws to achieve their union. One of these 
components had three central perforations with 3 
mm of distance among each other which guided 
the block perforation and implant placement.

The component 1  (figure 1) had a 
rectangular base with 75 mm of lenght x 40 mm 
of width x 5 mm of thickness. In the central area, 
there are three cylinders 3 mm equidistant from 
each other. Each cylinder had 4 mm height x 4 mm 
diameter. In this component, there are four central 
perforations, bilaterally, with 2 mm of diameter 
enabling the screwing of specific screws to link 
components 2 and 3.  The component 2 (figure 1) 
had a rectangular base with 75 mm of lenght x 40 
mm of width x 5 mm of thickness with a central 
hole matching the central part of component 1.  
The component 3 (figure 1) had a rectangular 
shape with 75 mm of lenght, 10 mm of width and 
3 mm of thickness containing 3 central orifices 
with 4 mm of diameter matching the location of 
the cylinders positioned onto the base (component 
1). This last component was fixed to the block and 
determined the standardization of the distance 
and sites for the insertion of the external hexagon 
implants (AS Technology Titanium Fix, São José 
dos Campos – Brazil). Only one set of standardized 
and conventional burs (AS Technology Titanium 
Fix, São José dos Campos – Brazil) for implant 
installation was used:  spearhead-shaped bur and 
helical-shaped burs of 2; 2.5; 2.8; 3.0 and 3.2 mm 
of diameter. The protocol for the execution of the 
perforations followed the conventional patterns, 
excluding the asepsis care. The mean speed of the 
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Figure 1 – (a) component (b) component 2 and (c) component 3.

A b c

perforations and the insertion was 1,800 and 14 
revolutions per minute, respectively. The torque 
was adjusted for 40 Ncm, and the ending of the 
implant insertion was executed manually with 
the aid of the surgical ratchet wrench.

Onto the platform of implant installation, 
an abutment (Microunit, AS Technology 
Titanium Fix, São José dos Campos – Brazil) was 
positioned, standardized with a metallic collar 
of 3 mm, and screwed with  20 Ncm torque 
with the aid of a mechanical torquemeter  (AS 
Technology Titanium Fix, São José dos Campos 
– Brazil).

By using plastic copings (AS Technology 
Titanium Fix, São José dos Campos, Brazil) and 
5 waxings, performed and standardized through 
the fixation of the base of the component 1 
to component 2, five superstructures were 
obtained (samples). This procedure enabled 
to reproduce systematically the waxing of all 
patterns. Then, the patterns were included 
in silicon rings by using a lining of phosphate 
without graphite (Bellavest SH Bego, Bremen 
– Germany). The casting was executed in Co-
Cr alloy (Wirobond SG, Bremen - Germany) 
and the metal injection occurred through a 
conventional centrifuge. After the cooling of the 
samples, these were individually placed onto the 
prosthetic abutments, when the set stability was 
verified without torque and through the visual 
verification of the adaptation. There was no 
instability that determined the exclusion of the 
superstructure [18-19]. The four uniaxial strain 
gauges (KFG-02-120-C1-11N30C2 - Kyowa 
Eletronic Instruments Co. Ltd, Tokyo – Japan) 
were bonded with the aid of cyanoacrylate-based 
adhesive (Super Bonder Loctite, São Paulo – 
Brazil) tangentially to the prosthetic abutments. 
Onto the upper extremity of the largest side of 
the block, the terminal plates were linked, where 
the electrical connections were performed. 

The electrical resistance variations were 
transformed into microstrain units (µε) through 

a conditioner of electrical signals (Model 5100B 
Scanner – System 5000 – Instruments Division 
Measurements Group, Inc. Raleigh, North 
Carolina – USA,) which was also responsible 
for recording the information. The strain-smart 
software installed in a computer with Pentium 
IV processor, 1.1 Ghz, 256 MB of RAM memory 
allowed the data recording. All procedure was 
repeated twice and the microstrain determined 
by the loading were registered by the four strain 
gauges. 

After the placement of each sample onto 
the abutments, torque was applied starting 
from the central screw, followed by the left and 
right ones. The same hexagonal tip of 1.17 mm 
was adapted in a progressive torquemeter to 
finish the screwing with about 10 Ncm torque, 
following the same sequence. 

To apply the load onto the samples, four 
non-axial points (A, A’, B and B’) were selected. 
Point A was localized at 3 mm far from the 
central screw of the most distal implant, towards 
the direction of a free surface. The point A’ was 
1 mm far from point A in the same direction. 
The point B was localized 3 mm far from the 
central screw of the most distal implant, towards 
the direction of a free surface. The point B’ was 
1 mm far from point B in the same direction, 
according to figure 2. 

Figure 2 – The Figure illustrates the position of the points of load 
application. The green arrows show the points placed 3 mm far from 
the most distal implant (A and B). The yellow arrows show the points 
placed 5 mm far from the most distal implant (A’ and B’).

Sousa TCS et al. Strain Gauge analysis of non-axial loads in 
three-element implant-supported prostheses
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The load application was executed through a 
loading device. After the placement of the samples 
under the pressure tip, a load of 30 kg was applied 
for 10 s. Then the values of the 3 strain gauges were 
recorded. For each point, in each superstructure, 
3 readings were performed and then their 
arithmetical mean was considered, therefore 
enabling a better accuracy of the measurements. 

At each test of the points, the screws were 
retorqued and the strain gauges were reset 
and balanced. Data were tabulated for further 
assessment regarding to both the application 
points and the microstrain (με) in the different 
areas tested. 

Data were submitted to two-way ANOVA 
for the comparison of the means with normal 
distribution with level of significance of 5%. 

Results
In this study, the absolute microstrain were 
considered because the purpose was not to 
determine either the compressive or tensile 
strength of the polyurethane block. The 
experimental variables were the load application 
points and the areas where the strain gauges 
were linked to. The treatment means the point 
where the loading was performed (Table 1). 

Treatment Displacement (mm) Sample Mean

A 3 1 37.300

A’ 5 1 122.375
B 3 1 5.245
B’ 5 1 1.915
A 3 2 212.163
A’ 5 2 297.745

B 3 2 323.498

B’ 5 2 415.747

A 3 3 99.995

 A’ 5 3 104.745

B 3 3 181.745

B’ 5 3 251.663

A 3 4 158.413

A’ 5 4 125.498

B 3 4 187.662

B’ 5 4 2.913

A 3 5 135.828

A’ 5 5 90.327

B 3 5 231.165

B’ 5 5 109.995

Table 1– Means of each Strain Gauge and mean of 4 Strain 
gauges, after the execution of the 3 loadings

Small differences were found between 
the sites of load application points as seen 
in table 1, without statistical significant 
differences. A microstrain pattern was not 
found regarding to both the linear (A to B) 
and centrifugal (A, A’ or B, B´) displacement.

Figure 3 – Graphic of interaction of means, based on the 
treatments and displacements.

Figure 4 – Graph of the strain gauge means in each treatment (A or 
B) and in each displacement (A= 3 mm,  A’ = 5 mm and B = 3 mm 
and B’ = 5 mm). The blue dot means the strain gauge mean.

The analysis of the points A, A’, B and 
B’, resulted in mean, median, coefficient of 
variation, maximum and minimum value. 
These results enabled to conclude that the 
coefficient of variation among them were 
similar, without statistically significant 
differences, despite that the maximum and 
minimum values are different.

Sousa TCS et al. Strain Gauge analysis of non-axial loads in 
three-element implant-supported prostheses
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DIscussIon
The biomechanical aspects of the osseointe-
grated implant are fundamentally different 
from those of the natural tooth, surrounding by 
periodontal ligament. The possibility of over-
load transference to the implant may exert the 
physiologic threshold and cause failure or even 
loss of the osseointegration, therefore resulting 
in microstrain around the implants that may 
hinder the long-term success of this rehabilita-
tive treatment [11,20,21]. 

The highest successful rates of im-
plants have been observed in areas with 
bone tissue type D1 and D2 of Zarb’s clas-
sification [16]; however, in predominantly 
bone marrow these results have seemed 
to be not very satisfactory [22,23]. In this 
context, the study object with the same 
modulus of elasticity of bone marrow (poly-
urethane = 3.6 GPa and bone marrow = 
4.25 GPa) provides an acceptable simula-
tion of the clinical practice Other authors 
also used this artificial model considering 
that it shows uniform elastic characteris-
tics [24,25]; however, the literature also 
reports studies employing bone blocks 
[12,13,26,27].

External hexagon implants were cho-
sen because they have been considered as 
the least stable when compared with in-
ternal hexagon implants [28,29] and they 
possibly provide greater microstrain at 
the peri-implantar area. Notwithstanding, 
Nishioka et al. 2011 showed that these dif-
ferences were not statistically significant in 
a study conducted similarly to this present 
study. However, it is possible to find in the 
literature studies verifying that the con-
nection type is relevant for the microstrain 
around the implants [31], but differently 
from this study, the finite element analysis was 
performed with single crowns. 

The choice for the linear positioning of 
the implants followed the line of reasoning 

Table 2– Results of the A (3 mm) and A’ (5 mm) treatments, in 
each strain gauge (SG), and the absolute mean of the treatment

TRT Results = A and A’

Variable Displacement Mean
Standard 
deviation

Coefficient of 
Variation

SG1
3 149.0 104.9 70.4

5 208.8 149.1 71.4

SG2
3 18.26 15.03 82.32

5 25.33 17.92 70.73

SG3
3 48.2 38.1 79.07

5 43.6 43.1 98.82

SG4
3 299.5 178.1 59.46

5 314.8 186.0 59.1

MEAN
3 128.7 65.3 50.75

5 148.1 84.8 57.26

In table 3, it is observed a greater variation 
from treatment B to B’, without statistically 
significant differences.

Table 3 – Results of treatments B (3 mm) and B’ (5 mm), in each 
strain gauge (SG), and the absolute mean of the treatment

TRT Results = B and B’

Variable Displacement Mean
Standard 
deviation

Coefficient of 
Variation

SG1
3 204.5 172.4 84.31

5 173.1 205.9 118.94

SG2
3 33.1 27.1 81.78

5 38.0 48.6 127.99

SG3
3 119.9 72.4 60.40

5 127.7 132.1 103.46

SG4
3 386 237 61.44

5 287 332 115.55

MEAN
3 185.9 115.8 62.3

5 156.4 177.4 113.41

According to the strain gauges means, 
there were no statistically significant differences 
between treatment A (displacement of 3 mm) and 
A’ (displacement of 5 mm) means, respectively 
157.3 and 152.3.

According to ANOVA for repeated 
measurements, there were no statistically 

significant differences for both the treatment 
(p = 0.6464), displacement (p = 0.8731) and 
interaction (p = 0.4447).

Sousa TCS et al. Strain Gauge analysis of non-axial loads in 
three-element implant-supported prostheses
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of Nishioka et al. 2011 who did not find 
statistically significant differences between 
this linear and offset position. Concerning to 
the linear positioning of the strain gauges, this 
study is in agreement of  the study conducted 
by Heckmann et al., 2004, among others, who 
studied the microstrain around the implants 
with 3-element superstructures [30,32-38]. This 
position justifies the little variation found in 
the microstrain  means of the non-axial loads 
executed by this present study, and the highest 
values were found in the points farthest from 
the implant e (A’ and B’). This affirmation can 
be justified by the study of Cehreli et al. 2004 
who affirmed that the positioning of the strain 
gauges influenced on the results of the types of 
the microstrain found.

The load of 30 kg employed in this 
study is based on the study of Mericske-Stern 
et al. (1995) who found values close to those 
found in this present study in the recordings of 
masticatory load in vivo, and it is in agreement 
with other studies of masticatory load [40].

The use of superstructures in implant-
supported prostheses casted in Co-Cr alloy is 
equally acceptable to the employment of Pd-Ag 
alloy because of its low cost, biocompatibility 
and durability so that it was the alloy type 
chosen by this present study [41].

Other important characteristic observed 
was that the microstrain means stayed inside 
the bone threshold of physiologic microstrain 
proposed in literature [5,7].

conclusIon
Based on the results obtained with the 
methodology employed, it can be concluded 
that the points of load application – non-axial 
and perpendicular to the long axis (A and B) 
and other two points at the extremity of the 
superstructure (A` and B`) did not statistically 
interfered on the magnitude of the microstrain 
of the surfaces analyzed. Also, the tensions 
generated in the areas studied stayed within 
the physiologic thresholds regardless of the 
axialiality of the loads.
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