Evaluation of marginal fit and microleakage of monolithic zirconia crowns cemented by bio-active and glass ionomer cements: In vitro study
DOI:
https://doi.org/10.14295/bds.2020.v23i1.1824Abstract
Objective: To evaluate the marginal fit and microleakage of monolithic zirconia crowns cemented with bioactive cement (Ceramir) compared to that cemented with glass ionomer cement and to evaluate the effect of thermocycling on marginal fit. Materials and methods: Twenty sound human molar teeth were prepared to receive a monolithic zirconia crowns. Teeth were divided randomly into two equal groups according to the type of luting cement. Group I: glass ionomer cement and group II: Ceramir cement. After cementation, the vertical marginal gap was assessed by using stereomicroscope before and after thermocycling. Twenty equidistant measurement points were taken for each crown. Leakage assessment was carried out using Fuchsin dye penetration followed by digital photography under a stereomicroscope. Data were analyzed by Mann-Whitney U test to compare between the two luting cements. Wilcoxon signed-rank test was used to evaluate the effect of thermocycling on the marginal fit (P ? 0.05)?Results: Whether before or after thermocycling, the results showed no significant difference between the marginal gap values of the two tested groups. For both groups, there was a significant increase in marginal gap values after thermocycling. Also, there was no significant difference between leakage scores of the two tested groups. Conclusions: Similarity in the physical properties and chemical composition of the two cements result in a non- significant effect on the vertical marginal fit and the extent of microleakage of translucent zirconia crowns. Thermocycling had a negative impact on the vertical marginal gap of the two tested luting agents.
Downloads
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Brazilian Dental Science uses the Creative Commons (CC-BY 4.0) license, thus preserving the integrity of articles in an open access environment. The journal allows the author to retain publishing rights without restrictions.
=================
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.