Assessment of remineralization potential of Theobromine and Sodium Fluoride gels on Artificial Caries like lesions

Authors

  • Mohamed Saber Elsherbini Orthodontics & Pediatric Dentistry Department - College of Dentistry - Qassim University. Qassim, KSA. Pediatric Dentistry and dental public health Department, Faculty of Oral and Dental Medicine, Assiut University. Assiut, Egypt. https://orcid.org/0000-0003-4747-5508

DOI:

https://doi.org/10.14295/bds.2020.v23i3.1975

Abstract

Objective: To compare the remineralization potential of theobromine and sodium fluoride gels on artificial caries like lesion. Materials and Methods: Forty longitudinal halves of human mandibular premolars were equally divided into 4 groups of 10 samples each: control group (C), samples were stored in distilled water during the experiment period. The remaining 30 specimens were subjected to demineralization protocol to create caries like lesions. samples were immersed for three days in a demineralization solution (pH 5.0) containing 0.2% carbopol and 0.1% lactic acid saturated with calcium phosphate tribasic. The samples were subdivided into 3 equal groups according to the treatment applied during the pH cycle. Demineralization group “D”: no treatment applied. Group “F” treated with 2000 mg/liter sodium fluoride gel. Group “T” treated with 200 mg/liter theobromine gel. The specimens of the two studies groups were subjected to Demineralization- Remineralization PH Cycle Protocol for 5 days (Alternating four steps: 1: Treatment material, fluoride or theobromine ˜= 3 minutes. 2: Demineralizing solution 3 hours. 3: treatment material ˜= 3 minutes. 4: Remineralizing solution till the next cycle). The samples were investigated by scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDXA). Results: The enamel of the demineralization group was porous with artificial caries like changes exposing the subsurface enamel rods with severe rod core defects. Theobromine gel and fluoride gel groups showed marked improvement in the surface characteristics in the enamel in both groups. Theobromine gel group showed more observable enamel surface improvement than the fluoride gel group. EDXA revealed that the calcium-phosphorus ratio displayed a descending order: (C > T > F > D). The differences between the two tested groups were not statistically significant. Conclusion: Theobromine gel had more effective remineralizing potential than fluoride gel as a result of its effect in improving the enamel surface characteristics of human teeth.

Keywords

Dental caries; Dental enamel, Ultrastructure; Hardness; Microscopy; Electron; Scanning; Sodium Fluoride, Therapeutic use; Theobromine/therapeutic use.

References

Margolis HC, Moreno EC. Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions. Calcif Tissue Int. 1992;50(2):137–43. doi:10.1007/bf00298791

- O'Mullane DM. Introduction and rationale for the use of fluoride for caries prevention. Int Dent J. 1994;44(3 Suppl 1):257–61.

- Zero DT. Dental caries process. Dent Clin North Am. 1999;43(4):635–64.

- Espelid I. Caries preventive effect of fluoride in milk, salt and tablets: a literature review. Eur Arch Paediatr Dent. 2009;10(3):149–56. doi:10.1007/bf03262676

Sudjalim TR, Woods MG, Manton DJ. Prevention of white spot lesions in orthodontic practice: a contemporary review. Aust Dent J. 2006;51(4):284–347. doi:10.1111/j.1834-7819.2006.tb00445.x

Chadwick BL, Roy J, Knox J, Treasure ET. The effect of topical fluorides on decalcification in patients with fixed orthodontic appliances: a systematic review. Am J Orthod Dentofacial Orthop. 2005;128(5):601–70. doi:10.1016/j.ajodo.2004.07.049

Benson PE, Shah AA, Millett DT, Dyer F, Parkin N, Vine RS. Fluorides, orthodontics and demineralization: a systematic review. J Orthod. 2005;32(2):102–14. doi:10.1179/146531205225021033

Derks A, Katsaros C, Frencken JE, van't Hof MA, Kuijpers-Jagtman AM. Caries-inhibiting effect of preventive measures during orthodontic treatment with fixed appliances. A systematic review. Caries Res. 2004;38(5):413–20. doi:10.1159/000079621

Benson PE, Parkin N, Millett DT, Dyer FE, Vine S, Shah A. Fluorides for the prevention of white spots on teeth during fixed brace treatment. Cochrane Database Syst Rev. 2004;(3):CD003809. doi:10.1002/14651858.CD003809.pub2

Mandall NA, Millett DT, Mattick CR, Hickman J, Worthington HV, Macfarlane TV. Orthodontic adhesives: a systematic review. J Orthod. 2002;29(3):205–195. doi:10.1093/ortho/29.3.205

Rinchuse DJ, Brady TA, Sahlaney JJ. Fluoride usage in orthodontics: considerations and concerns. J Clin Orthod. 1997;31(4):227–30.

Chang HS, Walsh LJ, Freer TJ. Enamel demineralization during orthodontic treatment. Aetiology and prevention. Aust Dent J. 1997;42(5):322–7. doi:10.1111/j.1834-7819.1997.tb00138.x

Erickson RL, Glasspoole EA. Model investigations of caries inhibition by fluoride-releasing dental materials. Adv Dent Res. 1995;9(3):315–31. doi:10.1177/08959374950090031801

Chadwick BL. Products for prevention during orthodontics. Br J Orthod. 1994;21(4):395–8. doi:10.1179/bjo.21.4.395

- Featherstone JD. Dental caries: a dynamic disease process. Aust Dent J. 2008;53(3):286–91. doi:10.1111/j.1834-7819.2008.00064.x

- Thurnheer T, Belibasakis GN. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization. Arch Oral Biol. 2018;89:77–83. doi:10.1016/j.archoralbio.2018.02.010

- Hamdan WA, Badri S, El Sayed A. The effect of fluoride varnish in preventing enamel demineralization around and under orthodontic bracket. Int Orthod. 2018;16(1):1–11. doi:10.1016/j.ortho.2018.01.005

McDonald RE, Avery DR, Stookey GK. Prevention of dental caries. In: McDonald RE, Avery DR, Dean JA, editors. Dentistry for child and adolscents. Saint Louis: Mosby; 2004.

- Gerth HU, Dammaschke T, Schäfer E, Züchner H. A three layer structure model of fluoridated enamel containing CaF2, Ca(OH)2 and FAp. Dent Mater. 2007;23(12):1521–8. doi:10.1016/j.dental.2006.12.007

- Campillo M, Lacharmoise PD, Reparaz JS, Goñi AR, Valiente M. On the assessment of hydroxyapatite fluoridation by means of Raman scattering. J Chem Phys. 2010;132(24):244501. doi:10.1063/1.3428556

- Mandel ID. Impact of saliva on dental caries. Compend Suppl. 1989;(13):S476–S81.

- Featherstone JD, Doméjean S. The role of remineralizing and anticaries agents in caries management. Adv Dent Res. 2012;24(2):28–31. doi:10.1177/0022034512452885

Cross KJ, Huq NL, Reynolds EC. Casein phosphopeptides in oral health--chemistry and clinical applications. Curr Pharm Des. 2007;13(8):793–800. doi:10.2174/138161207780363086

- Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified beta-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010;6(3):969–78. doi:10.1016/j.actbio.2009.08.034

- Shimazu K, Ogata K, Karibe H. Caries-preventive effect of fissure sealant containing surface reaction-type pre-reacted glass ionomer filler and bonded by self-etching primer. J Clin Pediatr Dent. 2012;36(4):343–7. doi:10.17796/jcpd.36.4.n444r730r773un53

- Alves KM, Franco KS, Sassaki KT, Buzalaf MA, Delbem AC. Effect of iron on enamel demineralization and remineralization in vitro. Arch Oral Biol. 2011;56(11):1192–8. doi:10.1016/j.archoralbio.2011.04.011

Nakamoto T, Cheuk SL, Yoshino S, Falster AU, Simmons WB. Cariogenic effect of caffeine intake during lactation on first molars of newborn rats. Arch Oral Biol. 1993;38(10):919–22. doi:10.1016/0003-9969(93)90103-s

Schneider PE, Alonzo G, Nakamoto T, Falster AU, Simmons WB. Effects of caffeine intake during gestation and lactation on the acid solubility of enamel in weanling rats. Caries Res. 1995;29(4):285–90. doi:10.1159/000262083

- Kargul B, Özcan M, Peker S, Nakamoto T, Simmons WB, Falster AU. Evaluation of human enamel surfaces treated with theobromine: a pilot study. Oral Health Prev Dent. 2012;10(3):275–82.

- Syafira G, Permatasari R, Wardani N. Theobromine effects on enamel surface microhardness: in vitro. J Dent Indonesia. 2012; 19(2):32-6. doi: 10.14693/jdi.v19i2.138

- Amaechi BT, Porteous N, Ramalingam K, Mensinkai PK, Ccahuana Vasquez RA, et al.. Remineralization of artificial enamel lesions by theobromine. Caries Res. 2013;47(5):399–405. doi:10.1159/000348589

- Mahardhika A, Noerdin A, Eriwati Y K. The effects of brushing on human enamel surface roughness after NaF gel and theobromine gel exposure. J Phys Conf Ser. 2017; 884(1):012007· doi: 10.1088/1742-6596/884/1/012007

Zero DT. In situ caries models. Adv Dent Res. 1995;9(3):214–34. doi:10.1177/08959374950090030501

Kim Y, Son HH, Yi K, Kim HY, Ahn J, Chang J. The color change in artificial white spot lesions measured using a spectroradiometer. Clin Oral Investig. 2013;17(1):139–46. doi:10.1007/s00784-012-0680-x

- Ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982;16(3):201–10. doi:10.1159/000260599

- Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent. 2011;39(6):430–7. doi:10.1016/j.jdent.2011.03.008

Argenta RM, Tabchoury CP, Cury JA. A modified pH-cycling model to evaluate fluoride effect on enamel demineralization. Pesqui Odontol Bras. 2003;17(3):241–6. doi:10.1590/s1517-74912003000300008

- Abou Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int J Nanomedicine. 2015;10:6371–94. Published 2015 Oct 8. doi:10.2147/IJN.S86033

Nakamoto T, Falster AU, Simmons WB. Theobromine: a safe and effective alternative for fluoride in dentifrices. J Caffeine Res. 2016;6(1):1-9. doi: 10.1089/jcr.2015.0023

- Yu OY, Zhao IS, Mei ML, Lo EC, Chu CH. A Review of the Common Models Used in Mechanistic Studies on Demineralization-Remineralization for Cariology Research. Dent J (Basel). 2017;5(2):20. Published 2017 Jun 18. doi:10.3390/dj5020020

- Featherstone JD, Rodgers BE. Effect of acetic, lactic and other organic acids on the formation of artificial carious lesions. Caries Res. 1981;15(5):377–85. doi:10.1159/000260541

- Karlinsey RL, Mackey AC, Blanken DD, Schwandt CS. Remineralization of eroded enamel lesions by simulated saliva in vitro. Open Dent J. 2012;6:170–6. doi:10.2174/1874210601206010170

Lanigan LT, Bartlett DW. Tooth wear with an erosive component in a Mediaeval Iceland population. Arch Oral Biol. 2013;58(10):1450–6. doi:10.1016/j.archoralbio.2013.06.019

Kaidonis J, Richards L, Townsend G. Non-carious changes to tooth crowns. Graham JM, Hume WR. (eds). Preservation and restoration of tooth structure. Queensland: Knowledge Books and Software; 2005. p.47-60.

Jansson C, Wallander MA, Johansson S, Johnsen R, Hveem K. Stressful psychosocial factors and symptoms of gastroesophageal reflux disease: a population-based study in Norway. Scand J Gastroenterol. 2010;45(1):21–9. doi:10.3109/00365520903401967

Bader G, Lavigne G. Sleep bruxism; an overview of an oromandibular sleep movement disorder. Review article. Sleep Med Rev. 2000;4(1):27–43. doi:10.1053/smrv.1999.0070

- Sadeghpour A. A neural network analysis of theobromine vs. fluoride on the enamel surface of human teeth. An experimental case study with strong implications for the production of a new line of revolutionary and natural non-fluoride based dentifrices. Diss Abstr Int. 2007;68(7) suppl.B:150.

- Herisa HM , Noerdin A, Eriwati YK. The effect of theobromine 200 mg/l topical gel exposure duration against surface enamel hardness resistance from 1% citric acid. J Phys Conf Ser. 2017, 884: 012009. doi: https://doi.org/10.1088/1742-6596/884/1/012009

Downloads

Published

2020-06-30

Issue

Section

Clinical or Laboratorial Research