Effects of salbutamol, montelukast and prednisone on orthodontic tooth movement in rats

Authors

  • Victor Chumpitaz-Cerrate 1. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2. Laboratorio de Farmacología, Universidad Científica del Sur, Lima, Perú. https://orcid.org/0000-0001-7073-8076
  • Lesly Chávez-Rimache Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. https://orcid.org/0000-0001-9987-7475
  • César Franco-Quino 1. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2. Laboratorio de Farmacología, Universidad Científica del Sur, Lima, Perú. https://orcid.org/0000-0003-1773-3019
  • Eliberto Ruiz-Ramirez 1. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2. Laboratorio de Farmacología, Universidad Científica del Sur, Lima, Perú. https://orcid.org/0000-0002-5340-7168
  • Elías Aguirre-Siancas https://orcid.org/0000-0003-4713-5511
  • Carlos Erazo-Paredes Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. https://orcid.org/0000-0002-8743-0809

DOI:

https://doi.org/10.14295/bds.2021.v24i2.2394

Abstract

Objective: To evaluate the effect of salbutamol, montelukast, and prednisone on orthodontic tooth movement in rats. Material and Methods: In vivo experimental preclinical study. The sample consisted of 48 rats randomly distributed in four study groups. Group A was given saline solution; to group B, salbutamol 4 mg/Kg; to group C, montelukast 2.5 mg/Kg and to group D, prednisone 2.5 mg/Kg. All were fitted with orthodontic devices and the medications were administered intraperitoneally every 12 hours for 5 days. The clinical evaluation (variation in the interincisal distance) was performed at one, three, five, and seven days and the histopathological analysis (cell count) at five and seven days. Results: In the clinical evaluation of the variation in the interincisal distance, a significant difference was found in all the evaluations (p <0.05). It was found that the salbutamol group presented higher variation values in the interincisal distance on all the days evaluated. In the histopathological analysis at five and seven days, it was found that the osteoblast and osteocyte count was significantly higher in the salbutamol group compared to the other groups (p ><0.05). However, in the subgroup analysis, it was found that there was no significant difference in the osteoblast and osteocyte count between the prednisone, montelukast, and control group (p>0.05). Conclusion: The administration of salbutamol increased the magnitude of orthodontic tooth movement; nonetheless, the administration of montelukast and prednisone did not modify the magnitude of orthodontic tooth movement in rats.

 

Keywords

Albuterol; Montelukast; Prednisone; Rats; Tooth movement.

Author Biographies

Victor Chumpitaz-Cerrate, 1. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2. Laboratorio de Farmacología, Universidad Científica del Sur, Lima, Perú.

Doctor en Ciencias de la Salud, Facultad de Medicina Humana UNMSM

Magíster en Farmacología, Facultad de Farmacia y Bioquímica UNMSM

 

Cirujano Dentista, Facultad de Odontología UNMSM

Investigador Titular CONCYTEC (código P0010536) 

Lesly Chávez-Rimache, Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Cirujana Dentista de la UNMSM.

César Franco-Quino, 1. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2. Laboratorio de Farmacología, Universidad Científica del Sur, Lima, Perú.

Cirujano Dentista de la UNMSM

Magister en Farmacología de la UNMSM

Eliberto Ruiz-Ramirez, 1. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2. Laboratorio de Farmacología, Universidad Científica del Sur, Lima, Perú.

Cirujano Dentista de la UNMSM

Magister en Farmacología de la UNMSM

Elías Aguirre-Siancas

Doctorado Neurociencia de la UNMSM

Magister en Fisiología de la UNMSM

Cirujano Dentista de la UNMSM

Carlos Erazo-Paredes, Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Cirujano Dentista de la UNMSM

References

Alqahtani H. Medically compromised patients in orthodontic practice: Review of evidence and recommendations. Int Orthod. 2019 Dec;17(4):776–88. https://doi.org/10.1016/j.ortho.2019.08.015

Inagaki Y, Akahane M, Shimizu T, Inoue K, Egawa T, Kira T, et al. Modifying oxygen tension affects bone marrow stromal cell osteogenesis for regenerative medicine. World J Stem Cells. 2017;9(7):98–106. https://dx.doi.org/10.4252/wjsc.v9.i7.98

Chumpitaz-Cerrate V, Bellido-Meza JA, Chavez-Rimache L, Rodriguez-Vargas C. Impact of inhaler use on dental caries in asthma pediatrics patients: A case-control study. Arch Argent Pediatr. 2020 Feb;118(1):38–46. http://dx.doi.org/10.5546/aap.2020.eng.38

Bartzela T, Turp JC, Motschall E, Maltha JC. Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am J Orthod Dentofacial Orthop. 2009 Jan;135(1):16–26. https://doi.org/10.1016/j.ajodo.2008.08.016

Asaad H, Al-Sabbagh R, Al-Tabba D, Kujan O. Effect of the leukotriene receptor antagonist montelukast on orthodontic tooth movement. J Oral Sci. 2017;59(2):297–302. https://doi.org/10.2334/josnusd.16-0482

Sato AY, Tu X, McAndrews KA, Plotkin LI, Bellido T. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone. 2015 Apr;73:60–8. https://doi.org/10.1016/j.bone.2014.12.012

Machado CC, Nojima Mda C, Rodrigues e Silva PM, Mandarim-de-Lacerda CA. Histomorphometric study of the periodontal ligament in the initial period of orthodontic movement in Wistar rats with induced allergic asthma. Am J Orthod Dentofacial Orthop. 2012 Sep;142(3):333–8.

https://doi.org/10.1016/j.ajodo.2012.04.011

Chibebe PC, Starobinas N, Pallos D. Juveniles versus adults: differences in PGE2 levels in the gingival crevicular fluid during orthodontic tooth movement. Braz Oral Res. 2010 Mar;24(1):108–13. http://dx.doi.org/10.1590/S1806-83242010000100018

Liang H, Zeng Y, Feng Y, Wu H, Gong P, Yao Q. Selective beta2-adrenoreceptor signaling regulates osteoclastogenesis via modulating RANKL production and neuropeptides expression in osteocytic MLO-Y4 cells. J Cell Biochem. 2018;1-10. https://doi.org/10.1002/jcb.27998

Yao Q, Liang H, Huang B, Xiang L, Wang T, Xiong Y, et al. Beta-adrenergic signaling affect osteoclastogenesis via osteocytic MLO-Y4 cells’ RANKL production. Biochem Bioph Res Co. 2017;488(4):634–40. https://doi.org/10.1016/j.bbrc.2016.11.011

Cottrell J, O'Connor JP. Effect of Non-Steroidal Anti-Inflammatory Drugs on Bone Healing. Pharmaceuticals (Basel, Switzerland). 2010;3(5):1668-93. https://doi.org/10.3390/ph3051668

Nie Z, Chen S, Peng H. Glucocorticoid induces osteonecrosis of the femoral head in rats through GSK3β-mediated osteoblast apoptosis. Biochem Bioph Res Co. 2019 Apr 9;511(3):693-699. https://doi.org/10.1016/j.bbrc.2019.02.118

Garcia-Martinez O, Diaz-Rodriguez L, Rodriguez-Perez L, De Luna-Bertos E, Reyes Botella C, Ruiz CC. Effect of acetaminophen, ibuprofen and methylprednisolone on different parameters of human osteoblast-like cells. Arch Oral Biol. 2011 Apr;56(4):317–23. https://doi.org/10.1016/j.archoralbio.2010.10.018

Krishnan V, Vijayaraghavan N, Manoharan M, Raj J, Davidovitch Z. The Effects of Drug Intake by Patients on Orthodontic Tooth Movement. Seminars in Orthodontics. 2012;18(4):278–85. https://doi.org/10.1053/j.sodo.2012.06.006

ARRIVE guidelines | NC3Rs [Internet]. [cited 2020 May 8]. Available from: https://www.nc3rs.org.uk/arrive-guidelines.

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals [Internet]. 8th ed. Washington (DC): National Academies Press (US); 2011 [cited 2020 May 8]. (The National Academies Collection: Reports funded by National Institutes of Health). Available from: http://www.ncbi.nlm.nih.gov/books/NBK54050/

Novaes A, Desiderá A, Nascimento G and Leite-Panissi C. Effects of Sodium Diclofenac on the Distribution of Fos Protein in Central Amygdala and Lateral Hypothalamus during Experimental Tooth Movement in Rats. World J Neurosci. 2014;4(1):183-189. doi: 10.4236/wjns.2014.42021.

Gonçalves CF, Desiderá AC, do Nascimento GC, Issa JP, Leite-Panissi CR. Experimental tooth movement and photobiomodulation on bone remodeling in rats. Lasers Med Sci. 2016;31(9):1883-1890. doi:10.1007/s10103-016-2064-y

Magdalena CM., Navarro VP, Park DM, Stuani MB and Rocha MJ. c-Fos Expression in Rat Brain Nuclei Following Incisor Tooth Movement. J Dent Res. 2004;83(1):50-54. http://dx.doi.org/10.1177/154405910408300110

Kondo M, Kondo H, Miyazawa K, Goto S, Togari A. Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling. Bone. 2013 Jan;52(1):39–47. https://doi.org/10.1016/j.bone.2012.09.007

Uchibori S, Sekiya T, Sato T, Hayashi K, Takeguchi A, Muramatsu R, et al. Suppression of tooth movement-induced sclerostin expression using β-adrenergic receptor blockers. Oral Diseases. 2020;26(3):621–9. https://doi.org/10.1111/odi.13280

De Oliveira EL, Freitas FF, de Macedo CG, Clemente-Napimoga JT, Silva MBF, Manhães-Jr LRC, et al. Low dose propranolol decreases orthodontic movement. Arch Oral Biol. 2014;59(10):1094–100. https://doi.org/10.1016/j.archoralbio.2014.06.006

Kang JH, Ting Z, Moon MR, Sim JS, Lee JM, Doh KE, et al. 5-Lipoxygenase inhibitors suppress RANKL-induced osteoclast formation via NFATc1 expression. Bioorg Med Chem. 2015 Nov 1;23(21):7069–78. https://doi.org/10.1016/j.bmc.2015.09.025

Moura AP, Taddei SR, Queiroz-Junior CM, Madeira MF, Rodrigues LF, Garlet GP, et al. The relevance of leukotrienes for bone resorption induced by mechanical loading. Bone. 2014 Dec;69:133–8. https://doi.org/10.1016/j.bone.2014.09.019

Bergström I, Isaksson H, Koskela A, Tuukkanen J, Ohlsson C, Andersson G, et al. Prednisolone treatment reduces the osteogenic effects of loading in mice. Bone. 2018;112:10–8. https://doi.org/10.1016/j.bone.2018.04.002

Yang J, Li J, Cui X, Li W, Xue Y, Shang P, et al. Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone. 2020 Jan;130:115108. https://doi.org/10.1016/j.bone.2019.115108

Piemontese M, Onal M, Xiong J, Wang Y, Almeida M, Thostenson JD, et al. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone. Bone. 2015;75:18–26. https://doi.org/10.1016/j.bone.2015.02.005

Wood CL, Soucek O, Wong SC, Zaman F, Farquharson C, Savendahl L, et al. Animal models to explore the effects of glucocorticoids on skeletal growth and structure. J Endocrinol. 2018 Jan;236(1):R69-r91. https://doi.org/10.1530/JOE-17-0361

Downloads

Published

2021-03-31

Issue

Section

Clinical or Laboratorial Research Manuscript