Evaluation of short- and long-term bond strength of zirconia after different surface treatments
DOI:
https://doi.org/10.4322/bds.2023.e4001Abstract
Objective: The aim of the study was to evaluate the short and long-term effects of different surface treatments on the bond strengths of zirconia. Material and Methods: 225 blocks of sintered zirconia samples (4 x 4 x 3 mm) were divided into five groups and subjected to different surface treatments: control group (without surface treatment), alumina group (sandblasting [25- micro m-aluminum-oxide]), alumina+Ambar Universal-APS (AU) group, CoJet group (silica-coated [30-micro m silica-modified aluminum particles]), and CoJet+AU group. Subsequently, zirconia samples were cemented against resin samples (total dimensions: 8x8x6mm) and assigned to three storage conditions: dry, humid (artificial saliva at 37°C for 30-days) or thermocycling [100.000-cycles] (n=15 per group). The microtensile bond strength (micro TBS) was determined using a universal testing machine. The failure modes were observed and analyzed using a stereomicroscope. Normality tests, descriptive statistics, and two-way ANOVA, followed by post-hoc comparisons, were performed to evaluate the effect of surface treatments and storage conditions on micro TBS (alpha=0.05). Results: micro TBS was influenced by surface treatment in the short and long-term (P<0.0001). The highest values were found in CoJet+AU in dry (33.51 ±2.48 MPa), humid (32.87 ± 2.68 MPa) and thermocycling (21.37 ±1.68 MPa) storage conditions compared with others. Interestingly, no significant differences in micro TBS were found among alum +AU and CoJet alone under any of the three storage conditions. Adhesive failure increased in all groups after thermocycling, but CoJet+AU had the lowest values of adhesive failure compared with others. Conclusion: The combination of CoJet and Ambar universal as a surface treatment for zirconia specimens provides significantly higher short and long-term bond strengths of adhesive cementation.
KEYWORDS
Adhesives; CoJet; MDP; Sandblasting; Zirconia.
Published
Issue
Section
License
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.