Effect of Thymoquinone on skeletal muscle regeneration via assessment of Pax-7 and Myo-D expression in the DMBA-treated hamster pouch
DOI:
https://doi.org/10.4322/bds.2023.e3620Resumen
Objective: Pax-7 and Myo-D regulate satellite cells’ activation and differentiation, thus muscle regeneration following damage. This research aimed to investigate the effect of Thymoquinone (TQ) on skeletal muscle regeneration following 7,12-dimethylbenz-(a)-anthracene (DMBA)-induced injury in the hamster buccal pouch via immunohistochemical assessment of Pax-7 and Myo-D expression. Material and Methods: 65 male golden Syrian hamsters were divided into 3 groups: Group 1: (n=5) received no treatment. Group 2: (n=20) served as a positive control. The left buccal pouches were painted with the carcinogen 3/week/ 6weeks. Group 3: (n=40) were subdivided into two equal sub-groups as follows: Group 3a: (n=20) were given one i.p. TQ injection. Group 3b: (n=20) were given two i.p. TQ injections. Five animals from each group (2 and 3) were euthanized at 24, 48 hrs, one, and two weeks after the last injection. A blood sample (2 ml) was withdrawn for assessment of TNF-alpha levels in serum. Serial sections of the pouches were examined histologically (H&E), and immunohistochemically (IHC) for the detection of Pax-7 and Myo-D proteins. Results: double i.p injections of TQ resulted in a significant elevation in the level of TNF-alpha from the second-day post-injection with a progressive formation of the muscle fibers (MFs) and mononuclear cells (MNCs) around the deeper blood vessels. At 14 days, no statistically significant difference was found between this group and group ‘2’, while the difference remained significant compared to groups ‘1’ and ‘3a’. The muscle fibers were more mature and compact. IHC results showed positive expression of the perivascular mononuclear cells (MNCs) to both Pax-7 and Myo-D with positive reactivity of the peripheral nuclei of muscle fibers to Pax-7 compared to the negative reaction in the positive control group. Conclusion: early and two TQ injections had a promising effect on the induction of striated muscle regeneration, mainly by non-myogenic stem cells.
KEYWORDS
Thymoquinone; Pax-7; Myo-D; Buccal pouch; Muscle regeneration.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Brazilian Dental Science uses the Creative Commons (CC-BY 4.0) license, thus preserving the integrity of articles in an open access environment. The journal allows the author to retain publishing rights without restrictions.
=================
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.