The effects of TiO2 nanotubes on bond strength and radiopacity of a self-adhesive resin cement in self-curing mode
DOI:
https://doi.org/10.4322/bds.2023.e3909Abstract
Objective: The aim of this in vitro study was to analyze the influence of the titanium dioxide nanotubes in a self-cure mode polymerization of a dual resin luting agent through push out bond strength and radiopacity tests. Material and Methods: After mixed with a commercial dual self-adhesive resin cement, three concentrations of titanium dioxide nanotubes (0.3, 0.6, and 0.9% by weight) were analyzed in self-curing mode. The bond strength to bovine root dentin and fiberglass posts was assessed with the push out bond strength test and was evaluated in three thirds (cervical, middle and apical) (n=10), followed by failure mode analysis (SEM), and the ISO standard 9917-2 was followed for radiopacity test (n=10). Data were statistically analyzed by one-way ANOVA test, followed by Tukey’s test (alpha=0.05). Results: Reinforced self-adhesive resin cement with 0.6% titanium dioxide nanotubes showed significant difference compared to the control group for push out test (p=0.00158). The modified groups did not show significant difference among thirds (p=0.782). Radiopacity showed higher value for group with 0.9% titanium dioxide nanotubes in comparison with control group (p<0.001). Conclusion: The addition of titanium dioxide nanotubes to a self-adhesive resin cement increased the bond strength to dentin and radiopacity values in the self-cure polymerization mode.
KEYWORDS
Bond strength; Dental cements; Fiber post; Nanotubes; Radiopacity; Titanium.
Published
Issue
Section
License
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.