Effect of varying thickness and artificial aging on color and translucency of cubic zirconia and lithium disilicate ceramics
DOI:
https://doi.org/10.14295/bds.2021.v24i3.2623Abstract
Objective: The aim of this study is to evaluate the effect of varying thickness and artificial aging on the color and translucency of cubic zirconia and lithium disilicate ceramics. Material and Methods: A total of 30 square shaped disks (12 mm x 12 mm) were fabricated from the cubic zirconia (Bruxzir Anterior) blank and lithium disilicate blocks (E.max CAD), used in three thicknesses (0.5mm, 0.8mm and 1mm). Portable spectrophotometer Vita Easyshade Advance was used to obtain color coordinates, which were substituted in formulas and used to calculate color change and translucency parameter values before and after aging (thermocycling for lithium disilicate and hydrothermal aging for cubic zirconia). Repeated measures Analysis of Variance (ANOVA) was used to study the effect of ceramic type, thickness, aging and their interaction on mean translucency parameter. Two-way (ANOVA) was used to study the effect of ceramic type, thickness and their interaction on mean color change (E). Results: Statistical analysis showed that E.max CAD HT is more translucent than Bruxzir Anterior. Translucency decreased as thickness increased. There was a statistically significant decrease in TP after aging for both materials. Lithium disilicate showed statistically significant greater E when subjected to aging than cubic zirconia, with both E values being clinically imperceptible. As thickness increased, E decreased. Conclusions: Thickness highly affected translucency and color of ceramics. As thickness increases, translucency parameter decreases and color change becomes less evident. Aging also causes a significant decrease in translucency parameter and induces color change however color changes are imperceptible.
Keywords
Aging; Ceramics; Color; Translucency.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Brazilian Dental Science uses the Creative Commons (CC-BY 4.0) license, thus preserving the integrity of articles in an open access environment. The journal allows the author to retain publishing rights without restrictions.
=================
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.